A Look-ahead Bareiss Algorithm for General Toeplitz Matrices

نویسنده

  • Roland W. Freund
چکیده

The Bareiss algorithm is one of the classical fast solvers for systems of linear equations with Toeplitz coeecient matrices. The method takes advantage of the special structure, and it computes the solution of a Toeplitz system of order N with only O(N 2) arithmetic operations, instead of O(N 3) operations. However, the original Bareiss algorithm requires that all leading principal sub-matrices be nonsingular, and the algorithm is numerically unstable if singular or ill-conditioned submatrices occur. In this paper, an extension of the Bareiss algorithm to general Toeplitz systems is presented. Using look-ahead techniques, the proposed algorithm can skip over arbitrary blocks of singular or ill-conditioned submatrices, and at the same time, it still fully exploits the Toeplitz structure. Implementation details and operations counts are given, and numerical experiments are reported. We also discuss special versions of the proposed look-ahead Bareiss algorithm for Hermitian indeenite Toeplitz systems and banded Toeplitz systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A look-ahead Schur Algorithm

The classical Schur algorithm computes the LDL T factorization of a symmetric Toeplitz matrix in O(n 2) operations, but requires that all the principal minors of the matrix be nonsingular. Look-ahead schemes have been proposed to deal with matrices that have exactly singular principal minors 9], 11]. Unfortunately, these algorithms cannot be extended to matrices that have ill-conditioned princi...

متن کامل

On the stability of the Bareiss and related Toeplitz factorization algorithms

This paper contains a numerical stability analysis of factorization algorithms for computing the Cholesky decomposition of symmetric positive definite matrices of displacement rank 2. The algorithms in the class can be expressed as sequences of elementary downdating steps. The stability of the factorization algorithms follows directly from the numerical properties of algorithms for realizing el...

متن کامل

Solving linear systems with a Levinson-like solver

Abstract. In this paper we will present a general framework for solving linear systems of equations. The solver is based on the Levinson-idea for solving Toeplitz systems of equations. We will consider a general class of matrices, defined as the class of simple -Levinson conform matrices. This class incorporates, for instance, semiseparable, band, companion, arrowhead and many other matrices. F...

متن کامل

Fast Gaussian Elimination with Partial Pivoting for Matrices with Displacement Structure

Fast 0(n2) implementation of Gaussian elimination with partial pivoting is designed for matrices possessing Cauchy-like displacement structure. We show how Toeplitz-like, Toeplitz-plus-Hankel-like and Vandermondelike matrices can be transformed into Cauchy-like matrices by using Discrete Fourier, Cosine or Sine Transform matrices. In particular this allows us to propose a new fast 0{n2) Toeplit...

متن کامل

Numeric and Symbolic Computation of Problems Deened by Structured Linear Systems

This paper considers the problem of eeective algorithms for some problems having structured coeecient matrices. Examples of such problems include rational approximation and rational interpolation. The corresponding coeecient matrices include Hankel, Toeplitz and Vandermonde-like matrices. EEective implies that the algorithms studied are suitable for implementation in either a numeric environmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994