Recent Developments in Endmember Extraction and Spectral Unmixing

نویسندگان

  • Antonio Plaza
  • Gabriel Martín
  • Javier Plaza
  • Sergio Sánchez
چکیده

Spectral unmixing is an important task for remotely sensed hyperspectral data exploitation. The spectral signatures collected in natural environments are invariably a mixture of the pure signatures of the various materials found within the spatial extent of the ground instantaneous field view of the imaging instrument. Spectral unmixing aims at inferring such pure spectral signatures, called endmembers, and the material fractions, called fractional abundances, at each pixel of the scene. In this chapter, we provide an overview of existing techniques for spectral unmixing and endmember extraction, with particular attention paid to recent advances in the field such as the incorporation of spatial information into the endmember searching process, or the use of nonlinear mixture models for fractional abundance characterization. In order to substantiate the methods presented throughout the chapter, highly representative hyperspectral scenes obtained by different imaging spectrometers are used to provide a quantitative and comparative algorithm assessment. To address the computational requirements introduced by hyperspectral imaging algorithms, the chapter also A. Plaza (&), G. Martín, J. Plaza and S. Sánchez Department of Technology of Computers and Communications, University of Extremadura, Avda. de la Universidad s/n, 10071 Caceres, Spain e-mail: [email protected] G. Martín e-mail: [email protected] J. Plaza e-mail: [email protected] S. Sánchez e-mail: [email protected] M. Zortea Department of Mathematics and Statistics, University of Tromso, 9037 Tromso, Norway e-mail: [email protected] S. Prasad et al. (eds.), Optical Remote Sensing, Augmented Vision and Reality, 3, DOI: 10.1007/978-3-642-14212-3_12, Springer-Verlag Berlin Heidelberg 2011 235 includes a parallel processing example in which the performance of a spectral unmixing chain (made up of spatial–spectral endmember extraction followed by linear spectral unmixing) is accelerated by taking advantage of a low-cost commodity graphics co-processor (GPU). Combined, these parts are intended to provide a snapshot of recent developments in endmember extraction and spectral unmixing, and also to offer a thoughtful perspective on future potentials and emerging challenges in designing and implementing efficient hyperspectral imaging algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تجزیه‌ ی تُنُک تصاویر ابرطیفی با استفاده از یک کتابخانه‌ ی طیفی هرس شده

Spectral unmixing of hyperspectral images is one of the most important research fields  in remote sensing. Recently, the direct use of spectral libraries in spectral unmixing is on increase. In this way  which is called sparse unmixing, we do not need an endmember extraction algorithm and the number determination of endmembers priori. Since spectral libraries usually contain highly correlated s...

متن کامل

An image-based endmember bundle extraction algorithm using reconstruction error for hyperspectral imagery

Although many endmember extraction algorithms have been proposed for hyperspectral images in recent years, there are still some problems in endmember extraction which would lead to inaccurate endmember extraction. One important problem is the variation in endmember spectral signatures due to spatial and temporal variability in the condition of scene components and differential illumination cond...

متن کامل

Geometrical Endmember Extraction and Linear Spectral Unmixing of Multispectral Image

Accurate mapping is prepared using Linear unmixing of satellite images. Endmember extraction contributes the unmixing accuracy. In this paper, Endmembers are extracted using different Geometrical algorithms like Pixel Purity Index (PPI), Nearest Finder (N-FINDR) and Sequential Maximum Angle Convex Cone (SMACC) algorithms. Extracted Endmembers are given as input for unmixing and it is attempted ...

متن کامل

Minimum distance constrained nonnegative matrix factorization for the endmember extraction of hyperspectral images

Endmember extraction and spectral unmixing is a very challenging task in multispectral/hyperspectral image processing due to the incompleteness of information. In this paper, a new method for endmember extraction and spectral unmixing of hyperspectral images is proposed, which is called as minimum distance constrained nonnegative matrix factorization (MDC-NMF). After being compared with a newly...

متن کامل

An Endmember Extraction Method Based on Artificial Bee Colony Algorithms for Hyperspectral Remote Sensing Images

Mixed pixels are common in hyperspectral remote sensing images. Endmember extraction is a key step in spectral unmixing. The linear spectral mixture model (LSMM) constitutes a geometric approach that is commonly used for this purpose. This paper introduces the use of artificial bee colony (ABC) algorithms for spectral unmixing. First, the objective function of the external minimum volume model ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012