A small molecule p75NTR ligand normalizes signalling and reduces Huntington’s disease phenotypes in R6/2 and BACHD mice

نویسندگان

  • Danielle A. Simmons
  • Nadia P. Belichenko
  • Ellen C. Ford
  • Sarah Semaan
  • Marie Monbureau
  • Sruti Aiyaswamy
  • Cameron M. Holman
  • Christina Condon
  • Mehrdad Shamloo
  • Stephen M. Massa
  • Frank M. Longo
چکیده

Decreases in the ratio of neurotrophic versus neurodegenerative signalling play a critical role in Huntington’s disease (HD) pathogenesis and recent evidence suggests that the p75 neurotrophin receptor (NTR) contributes significantly to disease progression. p75NTR signalling intermediates substantially overlap with those promoting neuronal survival and synapse integrity and with those affected by the mutant huntingtin (muHtt) protein. MuHtt increases p75NTR-associated deleterious signalling and decreases survival signalling suggesting that p75NTR could be a valuable therapeutic target. This hypothesis was investigated by examining the effects of an orally bioavailable, small molecule p75NTR ligand, LM11A-31, on HD-related neuropathology in HD mouse models (R6/2, BACHD). LM11A-31 restored striatal AKT and other pro-survival signalling while inhibiting c-Jun kinase (JNK) and other degenerative signalling. Normalizing p75NTR signalling with LM11A-31 was accompanied by reduced Htt aggregates and striatal cholinergic interneuron degeneration as well as extended survival in R6/2 mice. The p75NTR ligand also decreased inflammation, increased striatal and hippocampal dendritic spine density, and improved motor performance and cognition in R6/2 and BACHD mice. These results support small molecule modulation of p75NTR as an effective HD therapeutic strategy. LM11A-31 has successfully completed Phase I safety and pharmacokinetic clinical trials and is therefore a viable candidate for clinical studies in HD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A small molecule TrkB ligand reduces motor impairment and neuropathology in R6/2 and BACHD mouse models of Huntington's disease.

Loss of neurotrophic support in the striatum caused by reduced brain-derived neurotrophic factor (BDNF) levels plays a critical role in Huntington's disease (HD) pathogenesis. BDNF acts via TrkB and p75 neurotrophin receptors (NTR), and restoring its signaling is a prime target for HD therapeutics. Here we sought to determine whether a small molecule ligand, LM22A-4, specific for TrkB and witho...

متن کامل

Baroreceptor reflex dysfunction in the BACHD mouse model of HuntingtonTMs disease. Œ PLOS Currents Huntington Disease

Huntington’s disease is a progressive, neurodegenerative disorder that presents with a triad of clinical symptoms, which include movement abnormalities, emotional disturbance and cognitive impairment. Recent studies reported dysfunction of the autonomic nervous system in Huntington’s disease patients, which may contribute to the increased incidence of cardiovascular events in this patient popul...

متن کامل

Metabolic and behavioral effects of mutant huntingtin deletion in Sim1 neurons in the BACHD mouse model of Huntington’s disease

Hypothalamic pathology, metabolic dysfunction and psychiatric symptoms are part of Huntington disease (HD), which is caused by an expanded CAG repeat in the huntingtin (HTT) gene. Inactivation of mutant HTT selectively in the hypothalamus prevents the development of metabolic dysfunction and depressive-like behavior in the BACHD mouse model. The hypothalamic paraventricular nucleus (PVN) is imp...

متن کامل

Op-brai130133 2159..2172

Deficits in sleep and circadian organization have been identified as common early features in patients with Huntington’s disease that correlate with symptom severity and may be instrumental in disease progression. Studies in Huntington’s disease gene carriers suggest that alterations in the electroencephalogram may reflect underlying neuronal dysfunction that is present in the premanifest stage...

متن کامل

Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal MRI and Histopathology in the R6/1 Mouse Model of Huntington’s Disease

Huntington's disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6 mouse models of HD express a mutant version of exon 1 HTT and typically develop motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Unlike the more commonly used R6/2 mouse line, R6/1 mice have fewer CAG repeats and, subsequently, a less rap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2016