Local cone approximations in optimization
نویسندگان
چکیده
Abstract: We show how to use intensively local cone approximations to obtain results in some fields of optimization theory such as optimality conditions, constraint qualifications, mean value theorems and error bound.
منابع مشابه
Non-Lipschitz Semi-Infinite Optimization Problems Involving Local Cone Approximation
In this paper we study the nonsmooth semi-infinite programming problem with inequality constraints. First, we consider the notions of local cone approximation $Lambda$ and $Lambda$-subdifferential. Then, we derive the Karush-Kuhn-Tucker optimality conditions under the Abadie and the Guignard constraint qualifications.
متن کاملAnalytic Solution for Hypersonic Flow Past a Slender Elliptic Cone Using Second-Order Perturbation Approximations
An approximate analytical solution is obtained for hypersonic flow past a slender elliptic cone using second-order perturbation techniques in spherical coordinate systems. The analysis is based on perturbations of hypersonic flow past a circular cone aligned with the free stream, the perturbations stemming from the small cross-section eccentricity. By means of hypersonic approximations for the ...
متن کاملAn SQP-type algorithm for nonlinear second-order cone programs
We propose an SQP-type algorithm for solving nonlinear second-order cone programming (NSOCP) problems. At every iteration, the algorithm solves a convex SOCP subproblem in which the constraints involve linear approximations of the constraint functions in the original problem and the objective function is a convex quadratic function. Those subproblems can be transformed into linear SOCP problems...
متن کاملOn the accuracy of uniform polyhedral approximations of the copositive cone
We consider linear optimization problems over the cone of copositive matrices. Such conic optimization problems, called copositive programs, arise from the reformulation of a wide variety of difficult optimization problems. We propose a hierarchy of increasingly better outer polyhedral approximations to the copositive cone. We establish that the sequence of approximations is exact in the limit....
متن کاملSemidefinite approximations of the matrix logarithm
We propose a new way to treat the exponential/relative entropy cone using symmetric cone solvers. Our approach is based on highly accurate rational (Padé) approximations of the logarithm function. The key to this approach is that our rational approximations, by construction, inherit the (operator) concavity of the logarithm. Importantly, our method extends to the matrix logarithm and other deri...
متن کامل