Characterization of Isoperimetric Sets inside Almost-convex Cones
نویسنده
چکیده
In this note we characterize isoperimetric regions inside almostconvex cones. More precisely, as in the case of convex cones, we show that isoperimetric sets are given by intersecting the cone with a ball centered at the origin.
منابع مشابه
Total Variation and Cheeger sets in Gauss space
The aim of this paper is to study the isoperimetric problem with fixed volume inside convex sets and other related geometric variational problems in the Gauss space, in both the finite and infinite dimensional case. We first study the finite dimensional case, proving the existence of a maximal Cheeger set which is convex inside any bounded convex set. We also prove the uniqueness and convexity ...
متن کاملBishop-Phelps type Theorem for Normed Cones
In this paper the notion of support points of convex sets in normed cones is introduced and it is shown that in a continuous normed cone, under the appropriate conditions, the set of support points of a bounded Scott-closed convex set is nonempty. We also present a Bishop-Phelps type Theorem for normed cones.
متن کاملEgoroff Theorem for Operator-Valued Measures in Locally Convex Cones
In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...
متن کاملSharp Isoperimetric Inequalities via the Abp Method
We prove some old and new isoperimetric inequalities with the best constant using the ABP method applied to an appropriate linear Neumann problem. More precisely, we obtain a new family of sharp isoperimetric inequalities with weights (also called densities) in open convex cones of R. Our result applies to all nonnegative homogeneous weights satisfying a concavity condition in the cone. Remarka...
متن کاملBornological Completion of Locally Convex Cones
In this paper, firstly, we obtain some new results about bornological convergence in locally convex cones (which was studied in [1]) and then we introduce the concept of bornological completion for locally convex cones. Also, we prove that the completion of a bornological locally convex cone is bornological. We illustrate the main result by an example.
متن کامل