Mastermind Mutations Generate a Unique Constellation of Midline Cells within the Drosophila CNS
نویسندگان
چکیده
BACKGROUND The Notch pathway functions repeatedly during the development of the central nervous system in metazoan organisms to control cell fate and regulate cell proliferation and asymmetric cell divisions. Within the Drosophila midline cell lineage, which bisects the two symmetrical halves of the central nervous system, Notch is required for initial cell specification and subsequent differentiation of many midline lineages. METHODOLOGY/PRINCIPAL FINDINGS Here, we provide the first description of the role of the Notch co-factor, mastermind, in the central nervous system midline of Drosophila. Overall, zygotic mastermind mutations cause an increase in midline cell number and decrease in midline cell diversity. Compared to mutations in other components of the Notch signaling pathway, such as Notch itself and Delta, zygotic mutations in mastermind cause the production of a unique constellation of midline cell types. The major difference is that midline glia form normally in zygotic mastermind mutants, but not in Notch and Delta mutants. Moreover, during late embryogenesis, extra anterior midline glia survive in zygotic mastermind mutants compared to wild type embryos. CONCLUSIONS/SIGNIFICANCE This is an example of a mutation in a signaling pathway cofactor producing a distinct central nervous system phenotype compared to mutations in major components of the pathway.
منابع مشابه
Induction of identified mesodermal cells by CNS midline progenitors in Drosophila.
The Drosophila ventral midline cells generate a discrete set of CNS lineages, required for proper patterning of the ventral ectoderm. Here we provide the first evidence that the CNS midline cells also exert inductive effects on the mesoderm. Mesodermal progenitors adjacent to the midline progenitor cells give rise to ventral somatic mucles and a pair of unique cells that come to lie dorsomedial...
متن کاملGene expression profiling of the developing Drosophila CNS midline cells.
The Drosophila CNS midline cells constitute a specialized set of interneurons, motorneurons, and glia. The utility of the CNS midline cells as a neurogenomic system to study CNS development derives from the ability to easily identify CNS midline-expressed genes. For this study, we used a variety of sources to identify 281 putative midline-expressed genes, including enhancer trap lines, microarr...
متن کاملThe formation of commissures in the Drosophila CNS depends on the midline cells and on the Notch gene.
The commissures of the Drosophila central nervous system (CNS) are formed in close relation to the ventral midline cells, a morphologically distinct set of cells located at the midline of the developing CNS. To analyze the function of these cells during commissure formation, we looked for mutations that result in the absence of commissures. One example of a gene that can give rise to such a phe...
متن کاملcommissureless Controls Growth Cone Guidance across the CNS Midline in Drosophila and Encodes a Novel Membrane Protein
The commissureless (comm) gene was identified previously in a large-scale screen for mutations that disrupt CNS axon pathways in Drosophila. The comm gene has a unique mutant phenotype: the complete absence of most axon commissures, while midline cells and other aspects of CNS fate and patterning are left unchanged. Here, we report on the molecular cloning, characterization, and expression of t...
متن کاملIdentification of motifs that are conserved in 12 Drosophila species and regulate midline glia vs. neuron expression.
Functional complexity of the central nervous system (CNS) is reflected by the large number and diversity of genes expressed in its many different cell types. Understanding the control of gene expression within cells of the CNS will help reveal how various neurons and glia develop and function. Midline cells of Drosophila differentiate into glial cells and several types of neurons and also serve...
متن کامل