Selective opioid agonist and antagonist competition for [3H]-naloxone binding in amphibian spinal cord.

نویسندگان

  • L C Newman
  • D R Wallace
  • C W Stevens
چکیده

Opioids elicit antinociception in mammals through three distinct types of receptors designated as mu, kappa and delta. However, it is not clear what type of opioid receptor mediates antinociception in non-mammalian vertebrates. Radioligand binding techniques were employed to characterize the site(s) of opioid action in the amphibian, Rana pipiens. Naloxone is a general opioid antagonist that has not been characterized in Rana pipiens. Using the non-selective opioid antagonist, [3H]-naloxone, opioid binding sites were characterized in amphibian spinal cord. Competitive binding assays were done using selective opioid agonists and highly-selective opioid antagonists. Naloxone bound to a single-site with an affinity of 11.3 nM and 18.7 nM for kinetic and saturation studies, respectively. A B(max) value of 2725 fmol/mg protein in spinal cord was observed. The competition constants (K(i)) of unlabeled mu, kappa and delta ranged from 2.58 nM to 84 microM. The highly-selective opioid antagonists yielded similar K(i) values ranging from 5.37 to 31.1 nM. These studies are the first to examine opioid binding in amphibian spinal cord. In conjunction with previous behavioral data, these results suggest that non-mammalian vertebrates express a unique opioid receptor which mediates the action of selective mu, kappa and delta opioid agonists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning, pharmacological characterization and tissue distribution of an ORL1 opioid receptor from an amphibian, the rough-skinned newt Taricha granulosa.

We have cloned and characterized an opioid receptor-like (ORL1; also referred to as NOP) receptor from a urodele amphibian, the rough-skinned newt Taricha granulosa The cDNA clone encodes a protein of 368 amino acids that contains the seven hydrophobic domains characteristic of G-protein-coupled receptors, and has the highest sequence identity to the frog (Rana pipiens) nociceptin-like and huma...

متن کامل

A subset of kappa opioid ligands bind to the membrane glucocorticoid receptor in an amphibian brain.

Previous studies demonstrated that a membrane receptor for glucocorticoids (mGR) exists in neuronal membranes from the roughskin newt (Taricha granulosa) and that this receptor appears to be a G protein-coupled receptor (GPCR). The present study investigated the question of whether this mGR recognizes nonsteroid ligands that bind to cognate receptors in the GPCR superfamily. To address this que...

متن کامل

Opioid agonist and antagonist treatment differentially regulates immunoreactive mu-opioid receptors and dynamin-2 in vivo.

Opioid agonists and antagonists can regulate the density of mu-opioid receptors in whole animal and in cell culture. High intrinsic efficacy agonists (e.g., etorphine), but not lower intrinsic efficacy agonists (e.g., morphine), produce mu-opioid receptor down-regulation and can alter the abundance of mu-opioid receptor mRNA. Conversely, opioid antagonists substantially increase the density of ...

متن کامل

3H-naloxone benzoylhydrazone binding in MOR-1-transfected Chinese hamster ovary cells: evidence for G-protein-dependent antagonist binding.

Naloxone benzoylhydrazone (NalBzoH) is a potent mu antagonist in vivo. In a cell line stably transfected with MOR-1 (CHO/MOR-1), NalBzoH also was an antagonist when examined in adenylyl cyclase studies. In binding studies, it displayed high affinity for the mu receptor, confirming its earlier characterization in brain membranes. In competition studies under equilibrium conditions, NalBzoH and d...

متن کامل

Characterization of the binding of [3H][Dmt1]H-Dmt-D-Arg-Phe-Lys-NH2, a highly potent opioid peptide.

The dermorphin-derived peptide [Dmt1]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt, 2',6'-dimethyltyrosine) labels mu-opioid receptors with high affinity and selectivity in receptor binding assays. In previous studies, [Dmt1]DALDA displayed a mechanism of action distinct from that of morphine, as evidenced by its insensitivity to antisense probes reducing morphine analgesia and incomplete cross tolerance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 884 1--2  شماره 

صفحات  -

تاریخ انتشار 2000