Detection of tumor response to a vascular disrupting agent by hyperpolarized 13C magnetic resonance spectroscopy.
نویسندگان
چکیده
Nuclear spin hyperpolarization can dramatically increase the sensitivity of the (13)C magnetic resonance experiment, allowing dynamic measurements of the metabolism of hyperpolarized (13)C-labeled substrates in vivo. Here, we report a preclinical study of the response of lymphoma tumors to the vascular disrupting agent (VDA), combretastatin-A4-phosphate (CA4P), as detected by measuring changes in tumor metabolism of hyperpolarized [1-(13)C]pyruvate and [1,4-(13)C(2)]fumarate. These measurements were compared with dynamic contrast agent-enhanced magnetic resonance imaging (DCE-MRI) measurements of tumor vascular function and diffusion-weighted MRI (DW-MRI) measurements of the tumor cell necrosis that resulted from subsequent loss of tumor perfusion. The rate constant describing flux of hyperpolarized (13)C label between [1-(13)C]pyruvate and lactate was decreased by 34% within 6 hours of CA4P treatment and remained at this lower level at 24 hours. The rate constant describing production of labeled malate from hyperpolarized [1,4-(13)C(2)]fumarate increased 1.6-fold and 2.5-fold at 6 and 24 hours after treatment, respectively, and correlated with the degree of necrosis detected in histologic sections. Although DCE-MRI measurements showed a substantial reduction in perfusion at 6 hours after treatment, which had recovered by 24 hours, DW-MRI showed no change in the apparent diffusion coefficient of tumor water at 6 hours after treatment, although there was a 32% increase at 24 hours (P < 0.02) when regions of extensive necrosis were observed by histology. Measurements of hyperpolarized [1-(13)C]pyruvate and [1,4-(13)C(2)]fumarate metabolism may provide, therefore, a more sustained and sensitive indicator of response to a VDA than DCE-MRI or DW-MRI, respectively.
منابع مشابه
Preclinical Development Detection of Tumor Response to a Vascular Disrupting Agent by Hyperpolarized C Magnetic Resonance Spectroscopy
Nuclear spin hyperpolarization can dramatically increase the sensitivity of the C magnetic resonance experiment, allowing dynamic measurements of the metabolism of hyperpolarized C-labeled substrates in vivo. Here, we report a preclinical study of the response of lymphoma tumors to the vascular disrupting agent (VDA), combretastatin-A4-phosphate (CA4P), as detected by measuring changes in tumor...
متن کاملDirect arterial injection of hyperpolarized 13C‐labeled substrates into rat tumors for rapid MR detection of metabolism with minimal substrate dilution
PURPOSE A rat model was developed to enable direct administration of hyperpolarized 13 C-labeled molecules into a tumor-supplying artery for magnetic resonance spectroscopy (MRS) studies of tumor metabolism. METHODS Rat P22 sarcomas were implanted into the right inguinal fat pad of BDIX rats such that the developing tumors received their principle blood supply directly from the right superior...
متن کاملIntegrated Systems and Technologies Hyperpolarized C Spectroscopy Detects Early Changes in Tumor Vasculature and Metabolism after VEGF Neutralization
No clinically validated biomarkers exist to image tumor responses to antiangiogenic therapy. Here, we report the utility of hyperpolarized C magnetic resonance spectroscopy (MRS) to detect the early effects of anti-VEGF therapy. In two colorectal cancer xenograft models, displaying differential sensitivity to VEGF blockade, we compared hyperpolarized MRS with measurements of tumor perfusion usi...
متن کاملDetection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine
Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...
متن کاملMonitoring mammary tumor progression and effect of tamoxifen treatment in MMTV-PymT using MRI and magnetic resonance spectroscopy with hyperpolarized [1-13C]pyruvate.
PURPOSE To use dynamic magnetic resonance spectroscopy (MRS) of hyperpolarized (13)C-pyruvate to follow the progress over time in vivo of breast cancer metabolism in the MMTV-PymT model, and to follow the response to the anti-estrogen drug tamoxifen. METHODS Tumor growth was monitored by anatomical MRI by measuring tumor volumes. Dynamic MRS of hyperpolarized (13)C was used to measure an "app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 9 12 شماره
صفحات -
تاریخ انتشار 2010