Multiple quantitative trait loci modify cochlear hair cell degeneration in the Beethoven (Tmc1Bth) mouse model of progressive hearing loss DFNA36.

نویسندگان

  • Yoshihiro Noguchi
  • Kiyoto Kurima
  • Tomoko Makishima
  • Martin Hrabé de Angelis
  • Helmut Fuchs
  • Gregory Frolenkov
  • Ken Kitamura
  • Andrew J Griffith
چکیده

Dominant mutations of transmembrane channel-like gene 1 (TMC1) cause progressive sensorineural hearing loss in humans and Beethoven (Tmc1Bth/+) mice. Here we show that Tmc1Bth/+ mice on a C3HeB/FeJ strain background have selective degeneration of inner hair cells while outer hair cells remain structurally and functionally intact. Inner hair cells primarily function as afferent sensory cells, whereas outer hair cells are electromotile amplifiers of auditory stimuli that can be functionally assessed by distortion product otoacoustic emission (DPOAE) analysis. When C3H-Tmc1Bth/Bth is crossed with either C57BL/6J or DBA/2J wild-type mice, F1 hybrid Tmc1Bth/+ progeny have increased hearing loss associated with increased degeneration of outer hair cells and diminution of DPOAE amplitudes but no difference in degeneration of inner hair cells. We mapped at least one quantitative trait locus (QTL), Tmc1m1, for DPOAE amplitude on chromosome 2 in [(C/B)F1xC]N2-Tmc1Bth/+ backcross progeny, and three other QTL on chromosomes 11 (Tmc1m2), 12 (Tmc1m3), and 5 (Tmc1m4) in [(C/D)F1xC]N2-Tmc1Bth/+ progeny. The polygenic basis of outer hair cell degeneration in Beethoven mice provides a model system for the dissection of common, complex hearing loss phenotypes, such as presbycusis, that involve outer hair cell degeneration in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel DFNA36 Mutation in TMC1 Orthologous to the Beethoven (Bth) Mouse Associated with Autosomal Dominant Hearing Loss in a Chinese Family

Mutations in the transmembrane channel-like gene 1 (TMC1) can cause both DFNA36 and DFNB7/11 hearing loss. More than thirty DFNB7/11 mutations have been reported, but only three DFNA36 mutations were reported previously. In this study, we found a large Chinese family with 222 family members showing post-lingual, progressive sensorineural hearing loss which were consistent with DFNA36 hearing lo...

متن کامل

Mouse tales from Kresge: the deafness mouse.

Mouse models for human deafness have not only proven instrumental in the identification of genes for hereditary hearing loss, but are excellent model systems in which to examine gene function as well as the resulting pathophysiology. One mouse model for human nonsyndromic deafness is the deafness (dn) mouse, a spontaneous mutation in the curly-tail (ct) stock. The dn gene is on mouse Chromosome...

متن کامل

Therapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article

The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...

متن کامل

Hearing loss caused by progressive degeneration of cochlear hair cells in mice deficient for the Barhl1 homeobox gene.

The cochlea of the mammalian inner ear contains three rows of outer hair cells and a single row of inner hair cells. These hair cell receptors reside in the organ of Corti and function to transduce mechanical stimuli into electrical signals that mediate hearing. To date, the molecular mechanisms underlying the maintenance of these delicate sensory hair cells are unknown. We report that targeted...

متن کامل

Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss.

The classic view of sensorineural hearing loss (SNHL) is that the "primary" targets are hair cells, and that cochlear-nerve loss is "secondary" to hair cell degeneration. Our recent work in mouse and guinea pig has challenged that view. In noise-induced hearing loss, exposures causing only reversible threshold shifts (and no hair cell loss) nevertheless cause permanent loss of >50% of cochlear-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 173 4  شماره 

صفحات  -

تاریخ انتشار 2006