Meteoritic Parent Bodies: Their Number and Identification

نویسندگان

  • Thomas H. Burbine
  • Timothy J. McCoy
  • Anders Meibom
  • Brett Gladman
  • Klaus Keil
چکیده

Extensive collection efforts in Antarctica and the Sahara in the past 10 years have greatly increased the number of known meteorites. Groupings of meteorites according to petrologic, mineralogical, bulkchemical, and isotopic properties suggest the existence of 100–150 distinct parent bodies. Dynamical studies imply that most meteorites have their source bodies in the main belt and not among the near-Earth asteroids. Spectral observations of asteroids are currently the primary way of determining asteroid mineralogies. Linkages between ordinary chondrites and S asteroids, CM chondrites and C-type asteroids, the HEDs and 4 Vesta, and iron meteorites, enstatite chondrites, and M asteroids are discussed. However, it is difficult to conclusively link most asteroids with particular meteorite groups due to the number of asteroids with similar spectral properties and the uncertainties in the optical, chemical, and physical properties of the asteroid regolith.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UV photolysis, organic molecules in young disks, and the origin of meteoritic amino acids

The origin of complex organic molecules such as amino acids and their precursors found in meteorites and comets is unknown. Previous studies have accounted for the complex organic inventory of the Solar System by aqueous chemistry on warm meteoritic parent bodies, or by accretion of organics formed in the interstellar medium. This paper proposes a third possibility: that complex organics were c...

متن کامل

Differentiation of Metal-rich Meteoritic Parent Bodies

Introduction: There is now increasing evidence that the timescale between the formation of CAIs and of chondrules is < 1-2 Ma, and that the achondritic parent planets may have formed and differentiated within 2-4 Ma of the origin of the Solar System [1,2]. Long-lived chronometers (such as 187 Re

متن کامل

The Open University ’ s repository of research publications and other research outputs Molecular , isotopic and in situ analytical approaches to the study of meteoritic organic material

Organic materials isolated from carbonaceous meteorites provide us with a record of pre-biotic chemistry in the early Solar System. Molecular, isotopic and in situ studies of these materials suggest that a number of extraterrestrial environments have contributed to the inventory of organic matter in the early Solar System including interstellar space, the Solar nebula and meteorite parent bodie...

متن کامل

Molecular, isotopic and in situ analytical approaches to the study of meteoritic organic material

Organic materials isolated from carbonaceous meteorites provide us with a record of pre-biotic chemistry in the early Solar System. Molecular, isotopic and in situ studies of these materials suggest that a number of extraterrestrial environments have contributed to the inventory of organic matter in the early Solar System including interstellar space, the Solar nebula and meteorite parent bodie...

متن کامل

Hf-W chronometry and the accretion and early evolution of asteroids and terrestrial planets

We review the chronology for the accretion and earliest evolution of asteroids and terrestrial planets as obtained by applying Hf-W chronometry to meteoritic and planetary samples. Internal Hf-W isochrons for CAIs and angrites yield an absolute age for CAIs of 4568.6±0.7 Ma, which is ~1.5 Ma older than previously determined from PbPb ages for CAIs. Hafnium-tungsten isochrons for H chondrites co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002