Birational geometry of hypersurfaces in products of projective spaces
نویسنده
چکیده
We study the birational properties of hypersurfaces in products of projective spaces. In the case of hypersurfaces in P × P, we describe their nef, movable and effective cones and determine when they are Mori dream spaces. Using this, we give new simple examples of non-Mori dream spaces and analogues of Mumford’s example of a strictly nef line bundle which is not ample.
منابع مشابه
All Toric L.C.I.-Singularities Admit Projective Crepant Resolutions
It is known that the underlying spaces of all abelian quotient singularities which are embeddable as complete intersections of hypersurfaces in an affine space can be overall resolved by means of projective torus-equivariant crepant birational morphisms in all dimensions. In the present paper we extend this result to the entire class of toric l.c.i.-singularities. Our proof makes use of Nakajim...
متن کاملPseudo Ricci symmetric real hypersurfaces of a complex projective space
Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملFano double spaces of index two
We study birational geometry of Fano varieties, realized as double covers σ: V → P M , M ≥ 5, branched over generic hypersurfaces W = W 2(M −1) of degree 2(M − 1). We prove that the only structures of a rationally connected fiber space on V are the pencils-subsystems of the free linear system | − 1 2 K V |. The groups of birational and biregular self-maps of the variety V coincide: Bir V = Aut V .
متن کاملGeometry of Obstructed Equisingular Families of Algebraic Curves and Hypersurfaces
One of the main achievements of the algebraic geometry of the 20th century was to realize that it is fruitful not only to study algebraic varieties by themselves but also in families. That means that one should consider the space classifying all varieties with given properties. These spaces are called moduli spaces. The advantage of algebraic geometry is that many times those spaces are themsel...
متن کاملOn Totally Umbilical Hypersurfaces of Weakly Projective Symmetric Spaces
The object of the present paper is to study the totally umbilical hypersurfaces of weakly projective symmetric spaces and it is shown that the totally umbilical hypersurfaces of weakly projective symmetric space is also a weakly projective symmetric space.
متن کامل