Opiate withdrawal and the rat locus coeruleus: behavioral, electrophysiological, and biochemical correlates.

نویسندگان

  • K Rasmussen
  • D B Beitner-Johnson
  • J H Krystal
  • G K Aghajanian
  • E J Nestler
چکیده

We have compared the time course of the behavioral manifestations of opiate withdrawal to the in vivo activity of locus coeruleus (LC) neurons and to increases in the levels of G-proteins, adenylate cyclase, and cAMP-dependent protein kinase known to occur in the LC in opiate-dependent animals. Rats were given morphine by daily subcutaneous implantation of morphine pellets for 5 d. On the sixth day, morphine withdrawal was induced by subcutaneous administration of naltrexone, an opiate receptor antagonist, with additional doses given 6 and 24 hr later, conditions that resulted in sustained, maximal levels of withdrawal over the duration of the experiment. We found a striking parallel between the time courses of the behavioral signs and the increased activity of LC neurons during withdrawal, both of which appeared to follow 2 phases. There was an early, rapid phase, during which withdrawal signs and increased LC activity became most pronounced within 15-30 min after naltrexone administration, and then recovered rapidly by over 50% within 4 hr of withdrawal. Subsequently, there was a slower phase, during which the persisting withdrawal signs and elevated LC activity remained roughly constant from 4 to 24 hr and did not recover completely until after 72 hr of continuous withdrawal. Adenylate cyclase and cAMP-dependent protein kinase activities in isolated LC subcellular fractions, both elevated in dependent animals, recovered to control levels after 6 hr of withdrawal, in parallel with the rapid phase of withdrawal. Levels of G1 and Go, also elevated in dependent animals, remained only slightly elevated at 6 hr and returned to normal by 24 hr. Taken together, these data suggest that increased neuronal activity in the LC is associated temporally with the behavioral morphine withdrawal syndrome and that increased levels of G-proteins and an up-regulated cAMP system may contribute to the early withdrawal activation of these neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of chronic morphine administration on Ca2+/Calmodulin-Dependent protein kinase IIα activity in rat locus coeruleus and its possible role in morphine dependency

Introduction: The aim of this study was to assess the effect of Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) inhibitor (KN-93) injection into the locus coeruleus (LC) on the modulation of withdrawal signs. We also sought to study the effect of chronic morphine administration on CaMKIIα activity in the rat LC. Methods: The research was based on behavioral and molecular studies. In the behav...

متن کامل

Chronic morphine treatment increases cyclic AMP-dependent protein kinase activity in the rat locus coeruleus.

We have studied a possible role for cyclic AMP-dependent protein kinase in mediating opiate addiction in the central nervous system by focusing on the rat locus coeruleus. This brain region is well suited for these studies because it is relatively homogeneous and because a wealth of electrophysiological and behavioral data indicate that it plays an important role in mediating the chronic effect...

متن کامل

The effects of locus coeruleus electrical stimulation on brain waves of morphine dependent rats

Introduction: Opiates cause dependency via affect on central nervous system. Locus coeruleus nucleus is a main group of noradrenergic neurons in the brain that plays an important role in the expression of opioid withdrawal signs. During opioid withdrawal, brain waves change in addition to physical and behavioral signs. In this study, we examined the effects of locus coeruleus electrical sti...

متن کامل

The effect of morphine on some electrophysiological parameters of paragigantocellularis and locus coeruleus nuclei interconnections

As one of the most important diffused brain modulatory systems, the nucleus locus coeruleus (LC) receives most of its afferents from the nucleus paragigantocellularis (PGi) and plays a major role in the control of drug dependence and some emotional and exciting states. For detailed investigation of the effect of morphine on relationship between these two brain stem nuclei, the activity of the r...

متن کامل

The effect of morphine on some electrophysiological parameters of paragigantocellularis and locus coeruleus nuclei interconnections

As one of the most important diffused brain modulatory systems, the nucleus locus coeruleus (LC) receives most of its afferents from the nucleus paragigantocellularis (PGi) and plays a major role in the control of drug dependence and some emotional and exciting states. For detailed investigation of the effect of morphine on relationship between these two brain stem nuclei, the activity of the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 10 7  شماره 

صفحات  -

تاریخ انتشار 1990