Accelerated high-resolution photoacoustic tomography via compressed sensing.
نویسندگان
چکیده
Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.
منابع مشابه
In vivo optical-resolution photoacoustic computed tomography with compressed sensing.
Optical-resolution photoacoustic microscopy is becoming a powerful research tool for studying microcirculation in vivo. Moreover, ultrasonic-array-based optical-resolution photoacoustic computed tomography (OR-PACT), providing comparable resolution at an improved speed, has opened up new opportunities for studying microvascular dynamics. In this Letter, we have developed a compressed sensing wi...
متن کاملCompressed sensing and sparsity in photoacoustic tomography
Increasing the imaging speed is a central aim in photoacoustic tomography. This issue is especially important in the case of sequential scanning approaches as applied for most existing optical detection schemes. In this work we address this issue using techniques of compressed sensing. We demonstrate, that the number of measurements can significantly be reduced by allowing general linear measur...
متن کاملCompressed-sensing photoacoustic computed tomography in vivo with partially known support
Compressed sensing (CS) can recover sparse signals from undersampled measurements. In this work, we have developed an advanced CS framework for photoacoustic computed tomography (PACT). During the reconstruction, a small part of the nonzero signals’ locations in the transformed sparse domain is used as partially known support (PKS). PACT reconstructions have been performed with under-sampled in...
متن کاملAccelerated Dynamic Imaging by Reconstructing Sparse Differences using Compressed Sensing
Introduction Dynamic imaging with high spatial and temporal resolution is a demanding task in clinical MR tomography. In case of undersampling in dynamic imaging, radial trajectories are advantageous due to their incoherent artifact behavior. Compressed Sensing (CS) [1,2] is a new technique for reconstructing accelerated datasets without utilizing parallel imaging methods. First applications of...
متن کاملCompressed sensing in photoacoustic tomography in vivo.
The data acquisition speed in photoacoustic computed tomography (PACT) is limited by the laser repetition rate and the number of parallel ultrasound detecting channels. Reconstructing an image with fewer measurements can effectively accelerate the data acquisition and reduce the system cost. We adapt compressed sensing (CS) for the reconstruction in PACT. CS-based PACT is implemented as a nonli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 61 24 شماره
صفحات -
تاریخ انتشار 2016