Pregnancy enhances sustained Ca2+ bursts and endothelial nitric oxide synthase activation in ovine uterine artery endothelial cells through increased connexin 43 function.

نویسندگان

  • Fu-Xian Yi
  • Derek S Boeldt
  • Shannon M Gifford
  • Jeremy A Sullivan
  • Mary A Grummer
  • Ronald R Magness
  • Ian M Bird
چکیده

Endothelium-mediated vasodilation is specifically enhanced in uterine circulation during pregnancy, and production of nitric oxide (NO) is increased in response to a wide array of agonists. Uterine artery endothelial cells from nonpregnant (NP-UAECs) or pregnant (P-UAECs) ewes maintained in culture still show a pregnancy-enhanced difference in ATP-stimulated endothelial NO synthase (eNOS; official symbol NOS3) activation, even though NOS3 protein, purinergic receptors, and associated cell signaling proteins are expressed at equal levels. We have also shown that the pregnancy-enhanced endothelial cell NO response to ATP requires an enhanced and sustained capacitative entry phase that is likely mediated via canonical transient receptor potential protein/inositol 1,4,5-trisphosphate receptor type 2 interaction. In this study, we now show by simultaneous video imaging of individual Fura-2-loaded cells that the pregnancy-enhanced capacitative entry phase is not continuous and equal in all cells, but is in fact mediated as a series of periodic [Ca(2+)](i) bursts within individual cells. Not only does pregnancy increase the number of bursts over a longer time period in individual cells, but also a greater proportion of cells exhibit this burst activity, and at high cell density this occurs in a synchronous manner. The mediator of cell synchronization is connexin 43 (Cx43) gap junctions because 1) Cx43 is readily detectable by Western blot analysis in UAECs, whereas Cx40 and Cx37 are weakly detected or absent, and 2) pregnancy-specific enhancement of [Ca(2+)](i) bursts by ATP is blocked by inhibitory loop peptides selective to Cx43 ((43,37)GAP27) but not by a scrambled control peptide or (40)GAP27 or (40,37)GAP26 peptides, which are specific to Cx40 or Cx37. The relationship between Ca(2+) bursts and NOS3 activation is further established by the finding that (43,37)GAP27 inhibits ATP-stimulated NOS3 activation but has no effect on cell mitogenesis. We conclude that it is pregnancy-enhanced gap junction communication between cells that underlies pregnancy enhancement of capacitative entry via TRPC3 and, in turn, NOS3 activation. Such improved gap junction function allows greater and more sustained [Ca(2+)](i) responses to agents such as ATP within a single cell, as well as the additional recruitment of greater numbers of cells to the response in a coordinated and synchronous manner to support enhanced NO production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domain-Specific Partitioning of Uterine Artery Endothelial Connexin43 and Caveolin-1.

Uterine vascular adaptations facilitate rises in uterine blood flow during pregnancy, which are associated with gap junction connexin (Cx) proteins and endothelial nitric oxide synthase. In uterine artery endothelial cells (UAECs), ATP activates endothelial nitric oxide synthase in a pregnancy (P)-specific manner that is dependent on Cx43 function. Caveolar subcellular domain partitioning plays...

متن کامل

0 0 9

Pregnancy-Specific Changes in VEGF Ca2+ Signaling in Uterine Artery Endothelial Cells Derek S Boeldt* , Mary A Gummer, Fu-Xian Yi, Ian M Bird Pregnancy is a time of greatly increased blood flow in the uterus to meet the needs of the growing fetus. This is achieved through the mechanisms of vasodilation and angiogenesis. In diseased states, such as preeclampsia, proper flow to the fetus is not a...

متن کامل

Local effects of pregnancy on connexin proteins that mediate Ca2+-associated uterine endothelial NO synthesis.

UNLABELLED Uterine artery adaptations during gestation facilitate increases in uterine blood flow and fetal growth. HYPOTHESIS local expression and distribution of uterine artery connexins play roles in mediating in vivo gestational eNOS activation and NO production. We established an ovine model restricting pregnancy to a single uterine horn and measured uterine blood flow, uterine artery sh...

متن کامل

[Ca2+]i signaling vs. eNOS expression as determinants of NO output in uterine artery endothelium: relative roles in pregnancy adaptation and reversal by VEGF165.

Pregnancy is a time of greatly increased uterine blood flow to meet the needs of the growing fetus. Increased uterine blood flow is also observed in the follicular phase of the ovarian cycle. Simultaneous fura-2 and 4,5-diaminofluoresceine (DAF-2) imaging reveals that cells of the uterine artery endothelium (UA Endo) from follicular phase ewes produce marginally more nitric oxide (NO) in respon...

متن کامل

Pregnancy‐adapted uterine artery endothelial cell Ca2+ signaling and its relationship with membrane potential

Pregnancy-derived uterine artery endothelial cells (P-UAEC) express P2Y2 receptors and at high cell density show sustained and synchronous [Ca2+]i burst responses in response to ATP Bursts in turn require coupling of transient receptor potential canonical type3 channel (TRPC3) and inositol 1,4,5-triphosphate receptor type 2 (IP3R2), which is upregulated in P-UAEC in a manner dependent on connex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biology of reproduction

دوره 82 1  شماره 

صفحات  -

تاریخ انتشار 2010