Neural Networks and Neuro-fuzzy Based States and Parameters Estimation in Induction Motor Sensorless Drive
نویسندگان
چکیده
During the last decade, speed sensorless field-oriented control of induction motor has given a particular attention by researchers worldwide and a great number of papers have been published on this issue. In most of them, the authors proposed the speed estimation algorithms based on Kalman filter theory, neural networks and model of reference. In indirect vector control strategy, the accurate knowledge of the rotor resistance is critical to ensure field-orientation. However, very few papers have been published on the simultaneous estimation of the speed and the rotor resistance. This paper describes the use of artificial neural networks and neuro-fuzzy networks for the simultaneous estimation of the speed, rotor flux and rotor resistance of an induction motor. This achievement is in authors’ opinion a great contribution. Simulation results showed the effectiveness of the proposed schemes.
منابع مشابه
Seven-Level Direct Torque Control of Induction Motor Based on Artificial Neural Networks with Regulation Speed Using Fuzzy PI Controller
In this paper, the author proposes a sensorless direct torque control (DTC) of an induction motor (IM) fed by seven-level NPC inverter using artificial neural networks (ANN) and fuzzy logic controller. Fuzzy PI controller is used for controlling the rotor speed and ANN applied in switching select stator voltage. The control method proposed in this paper can reduce the torque, stator flux and to...
متن کاملA Novel MRAS Based Estimator for Speed-Sensorless Induction Motor Drive
In this paper, a novel stator current based Model Reference Adaptive System (MRAS) estimator for speed estimation in the speed-sensorless vector controlled induction motor drives is presented. In the proposed MRAS estimator, measured stator current of the induction motor is considered as a reference model. The estimated stator current is produced in an adjustable model to compare with the measu...
متن کاملA Current-Based Output Feedback Sliding Mode Control for Speed Sensorless Induction Machine Drive Using Adaptive Sliding Mode Flux Observer
This paper presents a new adaptive Sliding-Mode flux observer for speed sensorless and rotor flux control of three-phase induction motor (IM) drives. The motor drive is supplied by a three-level space vector modulation (SVM) inverter. Considering the three-phase IM Equations in a stator stationary two axis reference frame, using the partial feedback linearization control and Sliding-Mode (SM) c...
متن کاملSensorless Speed Control of Switched Reluctance Motor Drive Using the Binary Observer with Online Flux-Linkage Estimation
An adaptive online flux-linkage estimation method for the sensorless control of switched reluctance motor (SRM) drive is presented in this paper. Sensorless operation is achieved through a binary observer based algorithm. In order to avoid using the look up tables of motor characteristics, which makes the system, depends on motor parameters, an adaptive identification algorithm is used to estim...
متن کاملPerformance analysis of the sensorless adaptive sliding-mode neuro-fuzzy control of the induction motor drive with MRAS-type speed estimator
This paper discusses a model reference adaptive sliding-mode control of the sensorless vector controlled induction motor drive in a wide speed range. The adaptive speed controller uses on-line trained fuzzy neural network, which enables very fast tracking of the changing speed reference signal. This adaptive sliding-mode neuro-fuzzy controller (ASNFC) is used as a speed controller in the direct...
متن کامل