Improving Persian Document Classification Using Semantic Relations between Words
نویسندگان
چکیده
With the increase of information, document classification as one of the methods of text mining, plays vital role in many management and organizing information. Document classification is the process of assigning a document to one or more predefined category labels. Document classification includes different parts such as text processing, term selection, term weighting and final classification. The accuracy of document classification is very important. Thus improvement in each part of classification should lead to better results and higher precision. Term weighting has a great impact on the accuracy of the classification. Most of the existing weighting methods exploit the statistical information of terms in documents and do not consider semantic relations between words. In this paper, an automated document classification system is presented that uses a novel term weighting method based on semantic relations between terms. To evaluate the proposed method, three standard Persian corpuses are used. Experiment results show 2 to 4 percent improvement in classification accuracy compared with the best previous designed system for Persian documents. Keywords-component; Document classification; Semantic weight; Accuracy; Term weightin.
منابع مشابه
Towards Semi Automatic Construction of a Lexical Ontology for Persian
Lexical ontologies and semantic lexicons are important resources in natural language processing. They are used in various tasks and applications, especially where semantic processing is evolved such as question answering, machine translation, text understanding, information retrieval and extraction, content management, text summarization, knowledge acquisition and semantic search engines. Altho...
متن کاملBuilding Semantic Kernel for Persian Text Classification with a Small Amount of Training Data
The original idea of semantic kernels is to use semantic features instead of terms appeared in the text document. In this article, the documents are transformed into a new k-dimensional feature space by applying Singular Value Decomposition on the Term-Document matrix and extracting eigenvectors with higher energy. The suggested semantic kernel causes severe reduction of dimensions which leads ...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملOn the contribution of word embeddings to temporal relation classification
Temporal relation classification is a challenging task, especially when there are no explicit markers to characterise the relation between temporal entities. This occurs frequently in intersentential relations, whose entities are not connected via direct syntactic relations making classification even more difficult. In these cases, resorting to features that focus on the semantic content of the...
متن کاملرویکردی با ناظر در استخراج واژگان کلیدی اسناد فارسی با استفاده از زنجیرههای لغوی
Keywords are the main focal points of interest within a text, which intends to represent the principal concepts outlined in the document. Determining the keywords using traditional methods is a time consuming process and requires specialized knowledge of the subject. For the purposes of indexing the vast expanse of electronic documents, it is important to automate the keyword extraction task. S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1412.8147 شماره
صفحات -
تاریخ انتشار 2014