Kernel-Based Regularized Least Squares in R (KRLS) and Stata (krls)
نویسندگان
چکیده
The Stata package krls as well as the R package KRLS implement kernel-based regularized least squares (KRLS), a machine learning method described in Hainmueller and Hazlett (2014) that allows users to tackle regression and classification problems without strong functional form assumptions or a specification search. The flexible KRLS estimator learns the functional form from the data, thereby protecting inferences against misspecification bias. Yet it nevertheless allows for interpretability and inference in ways similar to ordinary regression models. In particular, KRLS provides closed-form estimates for the predicted values, variances, and the pointwise partial derivatives that characterize the marginal effects of each independent variable at each data point in the covariate space. The method is thus a convenient and powerful alternative to ordinary least squares and other generalized linear models for regression-based analyses.
منابع مشابه
krls: A Stata Package for Kernel-Based Regularized Least Squares
The Stata package krls implements kernel-based regularized least squares (KRLS), a machine learning method described in Hainmueller and Hazlett (2014) that allows users to tackle regression and classification problems without strong functional form assumptions or a specification search. The flexible KRLS estimator learns the functional form from the data, thereby protecting inferences against m...
متن کاملKernel Regularized Least Squares: Moving Beyond Linearity and Additivity Without Sacrificing Interpretability
We propose the use of Kernel Regularized Least Squares (KRLS) for social science modeling and inference problems. KRLS borrows from machine learning methods designed to solve regression and classification problems without relying on linearity or additivity assumptions. The method constructs a flexible hypothesis space that uses kernels as radial basis functions and finds the best-fitting surfac...
متن کاملKernel Regularized Least Squares: Reducing Misspecification Bias with a Flexible and Interpretable Machine Learning Approach
We propose the use of Kernel Regularized Least Squares (KRLS) for social science modeling and inference problems. KRLS borrows from machine learning methods designed to solve regression and classification problems without relying on linearity or additivity assumptions. The method constructs a flexible hypothesis space that uses kernels as radial basis functions and finds the best-fitting surfac...
متن کاملModeling Structure Property Relationships with Kernel Recursive Least Squares
Motivation. Modeling structure property relationships accurately is a challenging task and newly developed kernel based methods may provide the accuracy for building these relationships. Method. Kernelized variant of traditional recursive least squares algorithm is used to model two QSPR datasets. Results. All the datasets showed a good correlation between actual and predicted values of boiling...
متن کاملA novel extended kernel recursive least squares algorithm
In this paper, a novel extended kernel recursive least squares algorithm is proposed combining the kernel recursive least squares algorithm and the Kalman filter or its extensions to estimate or predict signals. Unlike the extended kernel recursive least squares (Ex-KRLS) algorithm proposed by Liu, the state model of our algorithm is still constructed in the original state space and the hidden ...
متن کامل