A Posteriori Error Estimators for Nonconforming Approximation

نویسندگان

  • ABDELLATIF AGOUZAL
  • A. AGOUZAL
چکیده

In this paper, an alternative approach for constructing an a posteriori error estimator for non-conforming approximation of scalar elliptic equation is introduced. The approach is based on the usage of post-processing conforming finite element approximation of the non-conforming solution . Then, the compatible a posteriori error estimator is defined by the local norms of difference between the nonconforming approximation and conforming postprocessing approximation on the element plus an additional residual term. We prove in general dimension the efficiency and the reliability of these estimators, without Helmholtz decomposition of the error, nor regularity assumption on the solution or the domain, nor saturation assumption. Finally explicit constants are given, which prove that these estimators are robust in suitable norms

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem

This paper compares different a posteriori error estimators for nonconforming first-order Crouzeix-Raviart finite element methods for simple second-order partial differential equations. All suggested error estimators yield a guaranteed upper bound of the discrete energy error up to oscillation terms with explicit constants. Novel equilibration techniques and an improved interpolation operator f...

متن کامل

A Posteriori Error Estimators for the Nonconforming P 1 {finite Element Discretization of Convection{diiusion Equations

In this paper we focus on adaptive methods for discretizing convection{diiusion equations by means of the nonconforming P 1 {{nite element. Local lower estimates for residual based a posteriori error estimators in a discrete H 1 {norm and in the L 2 {norm are proven. Moreover, a residual based a posteriori error estimator in the L 2 {norm is derived. The behaviour of local error estimators is i...

متن کامل

Residual and Hierarchical a Posteriori Error Estimates for Nonconforming Mixed Finite Element Methods

We analyze residual and hierarchical a posteriori error estimates for nonconforming finite element approximations of elliptic problems with variable coefficients. We consider a finite volume box scheme equivalent to a nonconforming mixed finite element method in a Petrov–Galerkin setting. We prove that all the estimators yield global upper and local lower bounds for the discretization error. Fi...

متن کامل

Error Estimators for Nonconforming Finite Element Approximations of the Stokes Problem

In this paper we define and analyze a posteriori error estimators for nonconforming approximations of the Stokes equations. We prove that these estimators are equivalent to an appropriate norm of the error. For the case of piecewise linear elements we define two estimators. Both of them are easy to compute, but the second is simpler because it can be computed using only the right-hand side and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007