Exact discrete breather compactons in nonlinear Klein-Gordon lattices.

نویسنده

  • J C Comte
چکیده

We demonstrate the existence of exact discrete compact breather solutions in nonlinear Klein-Gordon systems, and complete the work of Tchofo Dinda and Remoissenet [Phys. Rev. E 60, 6218 (1999)], by showing that the breathers stability is related principally to the lattice boundary conditions, the coupling term, and the harmonicity parameter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Moving Breather Solutions of a Generalized Discrete Nonlinear Schrödinger Equation

We obtain exact moving breather solutions of a generalized discrete nonlinear Schrödinger equation. For finite lattices, we find two different moving periodic breather solutions while for an infinite lattice we find a localized moving breather solution.

متن کامل

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

SOLVING NONLINEAR KLEIN-GORDON EQUATION WITH A QUADRATIC NONLINEAR TERM USING HOMOTOPY ANALYSIS METHOD

In this paper, nonlinear Klein-Gordon equation with quadratic term is solved by means of an analytic technique, namely the Homotopy analysis method (HAM).Comparisons are made between the Adomian decomposition method (ADM), the exact solution and homotopy analysis method. The results reveal that the proposed method is very effective and simple.

متن کامل

Exact Solution for Nonlinear Local Fractional Partial Differential Equations

In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...

متن کامل

Travelling breathers in Klein-Gordon lattices as homoclinic orbits to p−tori

Klein-Gordon chains are one-dimensional lattices of nonlinear oscillators in an anharmonic on-site potential, linearly coupled with their first neighbours. In this paper, we study the existence in such networks of spatially localized solutions, which appear time periodic in a referential in translation at constant velocity. These solutions are called travelling breathers. In the case of travell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 65 6 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2002