Spred2 Modulates the Erythroid Differentiation Induced by Imatinib in Chronic Myeloid Leukemia Cells

نویسندگان

  • Yuefeng Yang
  • Xiaoyun Liu
  • Fengjun Xiao
  • Shuya Xue
  • Qinqin Xu
  • Yue Yin
  • Huiyan Sun
  • Jie Xu
  • Hengxiang Wang
  • Qunwei Zhang
  • Hua Wang
  • Lisheng Wang
چکیده

Differentiation induction is currently considered as an alternative strategy for treating chronic myelogenous leukemia (CML). Our previous work has demonstrated that Sprouty-related EVH1 domainprotein2 (Spred2) was involved in imatinib mediated cytotoxicity in CML cells. However, its roles in growth and lineage differentiation of CML cells remain unknown. In this study, we found that CML CD34+ cells expressed lower level of Spred2 compared with normal hematopoietic progenitor cells, and adenovirus mediated restoration of Spred2 promoted the erythroid differentiation of CML cells. Imatinib could induce Spred2 expression and enhance erythroid differentiation in K562 cells. However, the imatinib induced erythroid differentiation could be blocked by Spred2 silence using lentiviral vector PLKO.1-shSpred2. Spred2 interference activated phosphorylated-ERK (p-ERK) and inhibited erythroid differentiation, while ERK inhibitor, PD98059, could restore the erythroid differentiation, suggesting Spred2 regulated the erythroid differentiation partly through ERK signaling. Furthermore, Spred2 interference partly restored p-ERK level leading to inhibition of erythroid differentiation in imatinib treated K562 cells. In conclusion, Spred2 was involved in erythroid differentiation of CML cells and participated in imatinib induced erythroid differentiation partly through ERK signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aclacinomycin A Sensitizes K562 Chronic Myeloid Leukemia Cells to Imatinib through p38MAPK-Mediated Erythroid Differentiation

Expression of oncogenic Bcr-Abl inhibits cell differentiation of hematopoietic stem/progenitor cells in chronic myeloid leukemia (CML). Differentiation therapy is considered to be a new strategy for treating this type of leukemia. Aclacinomycin A (ACM) is an antitumor antibiotic. Previous studies have shown that ACM induced erythroid differentiation of CML cells. In this study, we investigate t...

متن کامل

Activin A induction of erythroid differentiation sensitizes K562 chronic myeloid leukemia cells to a subtoxic concentration of imatinib.

Chronic myeloid leukemia (CML) is a hematopoietic stem/progenitor cell disorder in which Bcr-Abl oncoprotein inhibits cell differentiation. Differentiation induction is considered an alternative strategy for treating CML. Activin A, a member of the transforming growth factor-β superfamily, induces erythroid differentiation of CML cells through the p38 MAPK pathway. In this study, treatment of t...

متن کامل

Analysis of Expression Of SIRT1 Gene In Patients With Chronic Myeloid Leukemia Resistant To Imatinib Mesylate

Background: Chronic myeloid leukemia is a clonal myeloproliferative disease which is characterized by bcr/abl translocation. With the emergence of tyrosine kinase inhibitors such as imatinib mesylate, significant improvement has been made in treatment of this disease. However, drug resistance against this medicine is still an obstacle. SIRT1 is a gene with deacetylase activity which has been de...

متن کامل

Signaling pathways involved in chronic myeloid leukemia pathogenesis: the importance of targeting Musashi2-Numb signaling to eradicate leukemia stem cells

Objective(s): Chronic myeloid leukemia (CML) is a myeloid clonal proliferation disease defining by the presence of the Philadelphia chromosome that shows the movement of BCR-ABL1. In this study, the critical role of the Musashi2-Numb axis in determining cell fate and relationship of the axis to important signaling pathways such as Hedgehog and Notch that are essential ...

متن کامل

MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors.

MicroRNAs (miRNAs) are key regulators of hematopoietic cell differentiation and may contribute to altered growth of leukemic stem cells. Using microarray-based miRNA profiling, we found that miRNA 486 (miR-486) is significantly upregulated in chronic myeloid leukemia (CML) compared with normal CD34(+) cells, particularly in the megakaryocyte-erythroid progenitor population. miR-486-5p expressio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015