Multi-Graph-View Learning for Complicated Object Classification
نویسندگان
چکیده
In this paper, we propose to represent and classify complicated objects. In order to represent the objects, we propose a multi-graph-view model which uses graphs constructed from multiple graph-views to represent an object. In addition, a bag based multi-graph model is further used to relax labeling by only requiring one label for a bag of graphs, which represent one object. In order to learn classification models, we propose a multi-graph-view bag learning algorithm (MGVBL), which aims to explore subgraph features from multiple graphviews for learning. By enabling a joint regularization across multiple graph-views, and enforcing labeling constraints at the bag and graph levels, MGVBL is able to discover most effective subgraph features across all graph-views for learning. Experiments on real-world learning tasks demonstrate the performance of MGVBL for complicated object classification.
منابع مشابه
Multiple Structure-View Learning for Graph Classification.
Many applications involve objects containing structure and rich content information, each describing different feature aspects of the object. Graph learning and classification is a common tool for handling such objects. To date, existing graph classification has been limited to the single-graph setting with each object being represented as one graph from a single structure-view. This inherently...
متن کاملFast multi-view segment graph kernel for object classification
Object classification is an important issue in multimedia information retrieval. Usually, we can use images from multiple views (or multi-view images) to describe an object for classification. However, two issues remain unsolved. First, exploiting the spatial relations of local features from different view images for object classification. Second, accelerating the multi-view object classificati...
متن کاملVertex-Weighted Hypergraph Learning for Multi-View Object Classification
3D object classification with multi-view representation has become very popular, thanks to the progress on computer techniques and graphic hardware, and attracted much research attention in recent years. Regarding this task, there are mainly two challenging issues, i.e., the complex correlation among multiple views and the possible imbalance data issue. In this work, we propose to employ the hy...
متن کاملAn Iterative Fusion Approach to Graph-Based Semi-Supervised Learning from Multiple Views
Often, a data object described by many features can be naturally decomposed into multiple “views”, where each view consists of a subset of features. For example, a video clip may have a video view and an audio view. Given a set of training data objects with multiple views, where some objects are labeled and the others are not, semi-supervised learning with graphs from multi-views tries to learn...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کامل