ICA by PCA Approach: Relating Higher-Order Statistics to Second-Order Moments
نویسندگان
چکیده
It is well known that principal component analysis (PCA) only considers the second-order statistics and that independent component analysis (ICA) exploits higher-order statistics of the data. In this paper, for whitened data, we give an elegant way to incorporate higherorder statistics implicitly in the form of second-order moments, and show that ICA can be performed by PCA following a simple transformation. This method is termed P-ICA. Kurtosis-based P-ICA is equivalent to the fourth-order blind identification (FOBI) algorithm [2]. Analysis of the transformation form enables us to give the robust version of P-ICA, which exploits the trade-off of all even order statistics of sources. Experimental comparisons of P-ICA with the prevailing ICA methods are presented. The main advantage of P-ICA is that it enables any PCA system, especially the dedicated hardware, to perform ICA after slight modification.
منابع مشابه
oint invariant face recognition using endent component analysis and at tractor networks
We have explored two approaches to recognizing faces across changes in pose. First, we developed a representation of face images based on independent component analysis (ICA) and compared it to a principal component analysis (PCA) representation for face recognition. The ICA basis vectors for this data set were more spatially local than the PCA basis vectors and the ICA representation had great...
متن کاملViewpoint Invariant Face Recognition using Independent Component Analysis and Attractor Networks
We have explored two approaches to recogmzmg faces across changes in pose. First, we developed a representation of face images based on independent component analysis (ICA) and compared it to a principal component analysis (PCA) representation for face recognition. The ICA basis vectors for this data set were more spatially local than the PCA basis vectors and the ICA representation had greater...
متن کاملIndependent component representations for face recognition
In a task such as face recognition, much of the important information may be contained in the high-order relationships among the image pixels. A number of face recognition algorithms employ principal component analysis (PCA), which is based on the second-order statistics of the image set, and does not address high-order statistical dependencies such as the relationships among three or more pixe...
متن کاملndependent component representations for face recognition*
In a task such as face recognition, much of the important information may be contained in the high-order relationships among the image pixels. A number of face recognition algorithms employ principal component analysis (PCA), which is based on the second-order statistics of the image set, and does not address high-order statistical dependencies such as the relationships among three or more pixe...
متن کاملRotation of EOFs by the Independent Component Analysis: Toward a Solution of the Mixing Problem in the Decomposition of Geophysical Time Series
The Independent Component Analysis (ICA) is a recently developed technique for component extraction. This new method requires the statistical independence of the extracted components—a stronger constraint that uses higher-order statistics—instead of the classical decorrelation (in the sense of ‘‘no correlation’’), which is a weaker constraint that uses only second-order statistics. This techniq...
متن کامل