A sky polarization compass in lizards: the central role of the parietal eye.
نویسندگان
چکیده
The present study first examined whether ruin lizards Podarcis sicula are able to orientate using the e-vector direction of polarized light. Ruin lizards were trained and tested indoors, inside a hexagonal Morris water maze, positioned under an artificial light source producing plane polarized light with a single e-vector, which provided an axial cue. Lizards were subjected to axial training by positioning two identical goals in contact with the centre of two opposite side walls of the Morris water maze. Goals were invisible because they were placed just beneath the water surface, and water was rendered opaque. The results showed that the directional choices of lizards meeting learning criteria were bimodally distributed along the training axis, and that after 90 deg rotation of the e-vector direction of polarized light the lizards directional choices rotated correspondingly, producing a bimodal distribution which was perpendicular to the training axis. The present results confirm in ruin lizards results previously obtained in other lizard species showing that these reptiles can use the e-vector direction of polarized light in the form of a sky polarization compass. The second step of the study aimed at answering the still open question of whether functioning of a sky polarization compass would be mediated by the lizard parietal eye. To test this, ruin lizards meeting learning criteria were tested inside the Morris water maze under polarized light after their parietal eyes were painted black. Lizards with black-painted parietal eyes were completely disoriented. Thus, the present data show for the first time that the parietal eye plays a central role in mediating the functioning of a putative sky polarization compass of lizards.
منابع مشابه
A Distinct Layer of the Medulla Integrates Sky Compass Signals in the Brain of an Insect
Mass migration of desert locusts is a common phenomenon in North Africa and the Middle East but how these insects navigate is still poorly understood. Laboratory studies suggest that locusts are able to exploit the sky polarization pattern as a navigational cue. Like other insects locusts detect polarized light through a specialized dorsal rim area (DRA) of the eye. Polarization signals are tra...
متن کاملCentral neural coding of sky polarization in insects.
Many animals rely on a sun compass for spatial orientation and long-range navigation. In addition to the Sun, insects also exploit the polarization pattern and chromatic gradient of the sky for estimating navigational directions. Analysis of polarization-vision pathways in locusts and crickets has shed first light on brain areas involved in sky compass orientation. Detection of sky polarization...
متن کاملThe lizard celestial compass detects linearly polarized light in the blue.
The present study first examined whether ruin lizards, Podarcis sicula, are able to orientate using plane-polarized light produced by an LCD screen. Ruin lizards were trained and tested indoors, inside a hexagonal Morris water maze positioned under an LCD screen producing white polarized light with a single E-vector, which provided an axial cue. White polarized light did not include wavelengths...
متن کاملLinking the input to the output: new sets of neurons complement the polarization vision network in the locust central complex.
Polarized light is a key feature of the blue sky, used by many animals as a sensory cue for compass navigation. Like other insects, locusts perceive the E-vector orientation of polarized light with a specialized region of their compound eye, the dorsal rim area. Neurons in the brain relay this information through several processing stages to the central complex. The central complex has a modula...
متن کاملSky Compass Orientation in Desert Locusts—Evidence from Field and Laboratory Studies
Locusts are long-range migratory insects. At high population density, immature animals form marching hopper bands while adults take off and form huge swarms of millions of animals. At low population densities animals are solitarious, but likewise migrate, mostly during the night. Numerous studies aimed at predicting locust infestations showed that migrations both as hopper bands and as adults a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 213 Pt 12 شماره
صفحات -
تاریخ انتشار 2010