Multiprocessor Scheduling Using Hybrid Particle Swarm Optimization with Dynamically Varying Inertia
نویسندگان
چکیده
S.N.Sivanandam P.Visalakshi [email protected] [email protected] A.Bhuvaneswari [email protected] 1 Professor and Head, Department of Computer Science and Engineering, PSG College of Technology, Coimbatore, Tamilnadu, India – 641 004. 2 Senior Lecturer, Department of Computer Science and Engineering, PSG College of Technology, Coimbatore, Tamilnadu, India – 641 004. 3 PG Student, Department of Computer Science and Engineering, PSG College of Technology, Coimbatore, Tamilnadu, India – 641 004.
منابع مشابه
Improved Particle Swarm Optimization for Solving Multiprocessor Scheduling Problem: Enhancements and Hybrid Methods
Memetic algorithms (MAs) are hybrid evolutionary algorithms (EAs) that combine global and local search by using an EA to perform exploration while the local search method performs exploitation. Combining global and local search is a strategy used by many successful global optimization approaches, and MAs have in fact been recognized as a powerful algorithmic paradigm for evolutionary computing....
متن کاملDiversified Particle Swarm Optimization for Hybrid Flowshop Scheduling
The aim of this paper is to propose a new particle swarm optimization algorithm to solve a hybrid flowshop scheduling with sequence-dependent setup times problem, which is of great importance in the industrial context. This algorithm is called diversified particle swarm optimization algorithm which is a generalization of particle swarm optimization algorithm and inspired by an anarchic society ...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملHybrid intelligent algorithm [improved particle swarm optimization (PSO) with ant colony optimization (ACO)] for multiprocessor job scheduling
Efficient multiprocessor scheduling is essentially the problem of allocating a set of computational jobs to a set of processors to minimize the overall execution time. The main issue is how jobs are partitioned in which total finishing time and waiting time is minimized. Minimization of these two criteria simultaneously, is a multi objective optimization problem. There are many variations of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJCSA
دوره 4 شماره
صفحات -
تاریخ انتشار 2007