Experimental and FEM Modal Analysis of a Deployable-Retractable Wing
نویسندگان
چکیده
The aim of this paper is to conduct experimental modal analysis and numerical simulation to verify the structural characteristics of a deployable-retractable wing for aircraft and spacecraft. A modal impact test was conducted in order to determine the free vibration characteristics. Natural frequencies and vibration mode shapes were obtained via measurement in LMS Test. Lab. The frequency response functions were identified and computed by force and acceleration signals, and then mode shapes of this morphing wing structure were subsequently identified by PolyMAX modal parameter estimation method. FEM modal analysis was also implemented and its numerical results convincingly presented the mode shape and natural frequency characteristics were in good agreement with those obtained from experimental modal analysis. Experimental study in this paper focuses on the transverse response of morphing wing as its moveable part is deploying or retreating. Vibration response to different rotation speeds have been collected, managed and analyzed through the use of comparison methodology with each other. Evident phenomena have been discovered including the resonance on which most analysis is focused because of its potential use to generate large amplitude vibration of specific frequency or to avoid such resonant frequencies from a wide spectrum of response. Manufactured deployable-retractable wings are studied in stage of experimental modal analysis, in which some nonlinear vibration resulted should be particularly noted because such wing structure displays a low resonant frequency which is always optimal to be avoided for structural safety and stability.
منابع مشابه
Flutter Analysis of a Low Aspect Ratio Swept- Back Trapezoidal Wing at Low Subsonic Flow
A linear, aeroelastic analysis of a low aspect ratio swept back trapezoidal wing modeled as a cantilever plate is presented. An analytical and numerical formulation for both the aerodynamic forcing and structural response of the wing was developed. The analytical model uses a three dimensional time domain vortex lattice aerodynamic method. A Rayleigh-Ritz approach has been used to transfer equa...
متن کاملFEM Updating for Offshore Jacket Structures Using Measured Incomplete Modal Data
Marine industry requires continued development of new technologies in order to produce oil. An essential requirement in design is to be able to compare experimental data from prototype structures with predicted information from a corresponding analytical finite element model. In this study, structural model updating may be defined as the fit of an existing analytical model in the light of measu...
متن کاملAdvanced Deployable/Retractable Solar Panel System for Satellite Applications
Modern low earth orbit (LEO) satellites that require multi-mission flexibility are highly likely to be repositioned between different operational orbits. While executing this process the satellite may experience high levels of vibration and environmental hazards, exposing the deployed solar panel to dangerous stress levels, fatigue and space debris, hence it is desirable to retract the solar sa...
متن کاملLongitudinal and Transversal Vibration Response of Beams by Statistical Energy Analysis (SEA)
The useful and efficient method of Finite Element (FEM) has a drawback for dynamic analysis of complex structures, especially in the medium and high frequency range. To overcome this fundamental difficulty, application of Statistical Energy Analysis (SEA) and power flow technique has been suggested. As the SEA is based on the average response of structure and statistical properties of its reson...
متن کاملStatic and modal analysis of parabolic-boundary functionalized Carbon nanotube-reinforced composite plates using FEM
This paper investigates the effect of different methods of carbon nanotubes distribution in a thin matrix on static and dynamic behavior of the nanocomposite. Five different symmetric patterns of distribution are considered, including four parabolic patterns and a linear one. For each pattern, the effective mechanical properties of the resultant nanocomposite are calculated using the rule of mi...
متن کامل