Twinned dendrite growth in binary aluminum alloys
نویسندگان
چکیده
The formation of twinned dendrites (feathery grains) in binary Al–Zn, Al–Mg, Al–Cu and Al–Ni alloys has been studied in specimens directionally solidified under identical thermal conditions, i.e. G 100 K cm , v 1 mm s , and with slight natural convection in the melt. The influence of the solute element nature and content has been found to be of less importance than previously reported since feathery grains were formed in all four alloys, regardless whether the alloying elements are hexagonal close packed (Zn and Mg) or face-centered cubic with a high (Ni) or low (Cu) stacking fault energy. A detailed analysis confirmed that twinned dendrites grow along h110i directions in all four cases, with a complex branch morphology made of up to six to nine arms. Surprisingly, at high Zn or Mg compositions for which regular dendrites grow along h110i instead of h100i, [Gonzales F, Rappaz M. Metall Trans A 2006; 37: 2797. [1]] no twinned dendrites could be formed. In terms of both the growth kinetics advantage of twinned dendrites over regular ones and the associated tip shape, some experimental evidence seems to contradict the doublon conjecture suggested by Henry [Henry S. PhD thesis, Ecole Polytechnique Fédéral de Lausanne, 1999. [21]], at least for the solute compositions studied in the present work. 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
MODELLING OF THE PERMEABILITY FOR COLUMNAR DENDRITE STRUCTURES DURING SOLIDIFICATION OF MUSHY ALLOYS
A numerical model has been developed for the determination of liquid flow permeability through columnar dendrite during growth. The model is inclusive two stages, first numerical evolution of the dendrite shape during growth, and second numerical determination of the interdendritic liquid permeability. Simulation results shown which solute concentration by evolution of dendrite shape could resu...
متن کاملشببیه سازی تاثیر سرعت انجماد بر ریز ساختار آلیاژهای ریختگی آلومینیوم با استفاده از مدل شبکه عصبی مصنوعی
In cast aluminum and its alloys, the microstructure varies under different solidification conditions, causing variations in their mechanical properties. These materials are basically produced in sand and metallic molds or through die casting, each of which is associated with a unique solidification regime with significantly different cooling rates so that the resulting microstructure strongly d...
متن کاملModeling of coupled motion and growth interaction of equiaxed dendritic crystals in a binary alloy during solidification
Motion of growing dendrites is a common phenomenon during solidification but often neglected in numerical simulations because of the complicate underlying multiphysics. Here a phase-field model incorporating dendrite-melt two-phase flow is proposed for simulating the dynamically interacted process. The proposed model circumvents complexity to resolve dendritic growth, natural convection and sol...
متن کاملStudy of the twinned dendrite tip shape II: Experimental assessment
The favorable growth kinetics of twinned dendrites can be explained by their complex morphology, multiple side branching mechanisms, growth undercooling and tip morphology. Three models were proposed for the twinned dendrite tip shape: (i) a grooved tip [1] satisfying the Smith condition at the triple line; (ii) a doublon [2], i.e. a double-tip dendrite that grows with a narrow and deep liquid ...
متن کاملAtomistic and continuum modeling of dendritic solidification
Due to its technological importance, modeling of dendrite growth in pure metals and alloys remains a significant challenge in the field of materials science. In this review recent achievements in the dendrite modeling problem, using two distinct length scale approaches, are summarized. At the nanometer scale, molecular dynamics and Monte Carlo techniques have been developed to extract two impor...
متن کامل