Energy-gain measurements from a microwave inverse free-electron-laser accelerator.
نویسندگان
چکیده
Experiments are reported on inverse free-electron-laser acceleration, including for the first time observations of the energy change as a function of relative injection phase of the electron bunches. The microwave accelerating structure consists of a uniform circular waveguide with a helical wiggler and an axial magnetic field. Acceleration of the entire beam by 6% is seen for 6 MeV electron bunches at optimum relative phase. Experimental results compare favorably, for accelerating phases, with predictions of a three-dimensional simulation that includes large-orbit effects.
منابع مشابه
Conceptual Design for a 1-GeV IFEL Accelerator
A conceptual design for a multistaged 1-GeV IFEL laser-driven accelerator (laser linac) was developed using the Staged Electron Laser Acceleration (STELLA) inverse free electron laser (IFEL) model created at STI Optronics. A comparison with the UCLA TREDI model yields good agreement with the STELLA model. The 1-GeV IFEL laser linac consists of an IFEL buncher for forming microbunches and four I...
متن کاملVery High Energy Gain at the Neptune Inverse Free Electron Laser Experiment
We report the observation of energy gain in excess of 20 MeV at the Inverse Free Electron Laser Accelerator experiment at the Neptune Laboratory at UCLA. A 14.5 MeV electron beam is injected in an undulator strongly tapered in period and field amplitude. The IFEL driver is a CO2 10.6 μm laser with power larger than 400 GW. The Rayleigh range of the laser, ∼ 1.8 cm, is much shorter than the undu...
متن کاملHigh energy gain of trapped electrons in a tapered, diffraction-dominated inverse-free-electron laser.
Energy gain of trapped electrons in excess of 20 MeV has been demonstrated in an inverse-free-electron-laser (IFEL) accelerator experiment. A 14.5 MeV electron beam is copropagated with a 400 GW CO2 laser beam in a 50 cm long undulator strongly tapered in period and field amplitude. The Rayleigh range of the laser, approximately 1.8 cm, is much shorter than the undulator length yielding a diffr...
متن کاملThe Chirped-pulse Inverse Free-electron Laser
We propose a new accelerating concept, the chirpedpulse inverse free-electron laser (CPIFEL). We study the inverse free-electron laser (IFEL) accelerator both theoretically and computationally, and show that by using a femtosecond (fs), ultra-high-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large energy gains. Using a chirpe...
متن کاملIfel Experiment at Neptune Lab
We present a two stage Inverse Free Electron Laser accelerator proposed for construction at the UCLA Neptune Lab. Proof-of-principle experiments on the IFEL scheme have been carried out successfully. This experiment is intended to achieve a 100 MeV energy gain, staging two IFEL modules. It will use a 16 MeV electron beam, a 1 TW CO2 laser and two different tapered helical undulators. The proble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 86 9 شماره
صفحات -
تاریخ انتشار 2001