Abnormal lateral geniculate nucleus and optic chiasm in human albinism.

نویسندگان

  • Larissa Mcketton
  • Krista R Kelly
  • Keith A Schneider
چکیده

Our objective was to measure how the misrouting of retinal ganglion cell (RGC) fibers affects the organization of the optic chiasm and lateral geniculate nuclei (LGN) in human albinism. We compared the chiasmal structures and the LGN in both pigmented controls and patients with albinism by using high-resolution structural magnetic resonance imaging (MRI). We studied 12 patients with oculocutaneous albinism and 12 age-matched pigmented controls. Using a 3T MRI scanner, we acquired a T1 -weighted three-dimensional magnetization-prepared rapid gradient-echo (MPRAGE) image of the whole brain, oriented so that the optic nerves, chiasm, and tracts were in the same plane. We acquired multiple proton density-weighted images centered on the thalamus and midbrain, and averaged them to increase the signal, enabling precise manual tracing of the anatomical boundaries of the LGN. Albinism patients exhibited significantly smaller diameters of the optic nerves, chiasm and tracts, and optic chiasm and LGN volume compared with controls (P < 0.001 for all). The reductions in chiasmal diameters in the albinism compared with the control group can be attributed to the abnormal crossing of optic fibers and the reduction of RGCs in the central retina. The volume of the LGN devoted to the center of the visual field may be reduced in albinism due to fewer RGCs representing the area where the fovea would normally lie. Our data may be clinically useful in addressing how genetic deficits compromise proper structural and functional development in the brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymmetric visually evoked potentials in human albinos: evidence for visual system anomalies.

Behavioral, anatomic, and electrophysiologic studies indicate that the nondecussated optic system is functionally incompetent and anatomically disorganized in albino animals. The number of nondecussated optic nerve fibers from the retina to the lateral geniculate nuclei, pretectal nuclei, and superior colliculi is significantly reduced in albino mammals, and the laminae of the dorsal lateral ge...

متن کامل

On Parallel Streams through the Mouse Dorsal Lateral Geniculate Nucleus

The mouse visual system is an emerging model for the study of cortical and thalamic circuit function. To maximize the usefulness of this model system, it is important to analyze the similarities and differences between the organization of all levels of the murid visual system with other, better studied systems (e.g., non-human primates and the domestic cat). While the understanding of mouse ret...

متن کامل

Eye-specific projections of retinogeniculate axons are altered in albino mice.

The divergence of retinal ganglion cell (RGC) axons into ipsilateral and contralateral projections at the optic chiasm and the subsequent segregation of retinal inputs into eye-specific domains in their target, the dorsal lateral geniculate nucleus (dLGN), are crucial for binocular vision. In albinism, affected individuals exhibit a lack or reduction of pigmentation in the eye and skin, a conco...

متن کامل

Retinal recipient nuclei in the painted turtle, Chrysemys picta: an autoradiographic and HRP study.

Retinofugal pathways in the painted turtle were examined with autoradiographic and HRP methods. The majority of the retinal fibers decussate at the optic chiasm and course caudally to terminate in 12 regions of the diencephalon and mesencephalon. The pars dorsalis of the lateral geniculate nucleus is the densest target in the thalamus. Two nuclei dorsal to pars dorsalis--the dorsal optic and do...

متن کامل

Measuring Connectivity in the Primary Visual Pathway in Human Albinism Using Diffusion Tensor Imaging and Tractography.

In albinism, the number of ipsilaterally projecting retinal ganglion cells (RGCs) is significantly reduced. The retina and optic chiasm have been proposed as candidate sites for misrouting. Since a correlation between the number of lateral geniculate nucleus (LGN) relay neurons and LGN size has been shown, and based on previously reported reductions in LGN volumes in human albinism, we suggest ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 522 11  شماره 

صفحات  -

تاریخ انتشار 2014