Fault Detection of Nonlinear Processes Using Fuzzy C - means - based Kernel PCA

نویسنده

  • Lamiaa M. Elshenawy
چکیده

Nonlinearity in industrial processes such as chemical and biological processes is still a significant problem. Kernel principal component analysis (KPCA) has recently proven to be a powerful tool for monitoring nonlinear processes with numerous mutually correlated measured variables. One of the drawbacks of original KPCA is that computation time increases with the number of samples. In this article, fuzzy C-means clustering technique (FCM) is adopted to reduce the computational complexity of KPCA. The proposed approach (FCM-KPCA) is applied for fault detection of the Tennessee Eastman chemical process. Simulation results show the effectiveness of the proposed approach in terms of low computational cost and low missed detection rate. Keywords—Fault detection, fuzzy C-means, kernel PCA, nonlinear processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Detection Based on Type 2 Fuzzy system for Single-Rod Electrohydraulic Actuator

Electro-hydraulic systems with regards to the their specific features and applications among other industrial systems including mechanical, electrical and pneumatic systems, have been widely taken into consideration by the scientists and researchers. Due to the fact that the electro-hydraulic system is inherently a nonlinear system, has some problems such as signals saturation, nonlinear effici...

متن کامل

Design of nonlinear parity approach to fault detection and identification based on Takagi-Sugeno fuzzy model and unknown input observer in nonlinear systems

In this study, a novel fault detection scheme is developed for a class of nonlinear system in the presence of sensor noise. A nonlinear Takagi-Sugeno fuzzy model is implemented to create multiple models. While the T-S fuzzy model is used for only the nonlinear distribution matrix of the fault and measurement signals, a larger category of nonlinear systems is considered. Next, a mapping to decou...

متن کامل

Multivariate Statistical Monitoring of Nonlinear Biological Processes Using Kernel Pca

In this paper, a new nonlinear process monitoring technique based upon kernel principal component analysis (KPCA) is developed. In recent years, KPCA has been emerging to tackle the nonlinear monitoring problem. KPCA can efficiently compute principal components in high dimensional feature spaces by the use of integral operator and nonlinear kernel functions. The basic idea of KPCA is to first m...

متن کامل

Kernel Canonical Variate Analysis for Nonlinear Dynamic Process Monitoring

Effective monitoring of industrial processes provides many benefits. However, for dynamic processes with strong nonlinearity many existing techniques still cannot give satisfactory monitoring performance. This is evidenced by the well known Tennessee Eastman (TE) benchmark process, where some faults, e.g. Faults 3 and 9, have not been comfortably detected by almost all data-driven approaches pu...

متن کامل

Multivariate Statistical Kernel PCA for Nonlinear Process Fault Diagnosis in Military Barracks

Because of the nonlinear characteristics of monitoring system in military barracks, the traditional KPCA method either have low sensitivity or unable to detect the fault quickly and accurately. In order to make use of higher-order statistics to get more useful information and meet the requirements of real-time fault diagnosis and sensitivity, a new method of fault detection and diagnosis is pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015