K+-dependent Na+/Ca2+ exchanger 3 is involved in renal active calcium transport and is differentially expressed in the mouse kidney.

نویسندگان

  • Geun-Shik Lee
  • Kyung-Chul Choi
  • Eui-Bae Jeung
چکیده

Previously, we reported that renal active calcium-transporting genes are highly expressed in female mice and suggested that renal calcium-processing genes play a critical role in normal calcium reabsorption in females (Lee GS, Lee KY, Choi KC, Ryu YH, Paik SG, Oh GT, Jeung EB. J Bone Miner Res 22: 1968-1978, 2007). In the current study, we evaluated the differential expression of renal calcium-processing genes in male and female mice. Using microarray analysis, we identified K(+)-dependent Na(+)/Ca(2+) exchanger 3 (NCKX3) as a gene that was differentially expressed in the kidneys of female and male mice. The expression levels of renal NCKX3 mRNA and protein were higher in female than in male mice, whereas there was no difference between the genders in the levels of NCKX3 expression in the brain. Renal NCKX3 localized to the basolateral layer of distal convoluted tubules, indicating that this protein participates in renal calcium reabsorption. To identify putative regulators in the gender-specific expression of NCKX3, several hormones were injected into mature female and male mice. Although any hormones did not alter NCKX3 expression, adrenal gland-secreted hormones aldosterone and hydrocortisone did downregulate renal NCKX3 mRNA expression in female mice, but they did not change its protein levels. Taken together, the results in this study suggest that a high level of renal NCKX3 expression maintain in distal convoluted tubules may play a role in active calcium transport in the kidneys of female mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Control of Calcium Metabolism in Zebrafish (Danio rerio)

Zebrafish is an emerging model for the research of body fluid ionic homeostasis. In this review, we focus on current progress on the regulation of Ca2+ uptake in the context of Ca2+ sensing and hormonal regulation in zebrafish. Na⁺-K⁺-ATPase-rich cells (NaRCs), the specialized ionocytes in the embryonic skin and adult gills, play a dominant role in Ca2+ uptake in zebrafish. Transepithelial Ca2+...

متن کامل

Sodium/calcium exchange: its physiological implications.

The Na+/Ca2+ exchanger, an ion transport protein, is expressed in the plasma membrane (PM) of virtually all animal cells. It extrudes Ca2+ in parallel with the PM ATP-driven Ca2+ pump. As a reversible transporter, it also mediates Ca2+ entry in parallel with various ion channels. The energy for net Ca2+ transport by the Na+/Ca2+ exchanger and its direction depend on the Na+, Ca2+, and K+ gradie...

متن کامل

Functional role of sodium-calcium exchange in the regulation of renal vascular resistance.

Our study aimed to assess a possible functional role of the Na(+)/Ca(2+) exchanger in the regulation of renal vascular resistance (RVR). Therefore, we investigated the effects of an inhibition of the Na(+)/Ca(2+) exchanger either by lowering the extracellular sodium concentration ([Na(+)](e)) or, pharmacologically on RVR, by using isolated perfused rat kidneys. Graded decreases in [Na(+)](e) le...

متن کامل

Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport.

Mammalian Na+/Ca2+ exchangers are members of three branches of a much larger family of transport proteins [the CaCA (Ca2+/cation antiporter) superfamily] whose main role is to provide control of Ca2+ flux across the plasma membranes or intracellular compartments. Since cytosolic levels of Ca2+ are much lower than those found extracellularly or in sequestered stores, the major function of Na+/Ca...

متن کامل

Functional expression of the human cardiac Na+/Ca2+ exchanger in Sf9 cells: rapid and specific Ni2+ transport.

Although inhibition of the Na+/Ca2+ exchanger normally increases [Ca2+]i in neonatal cardiac myocytes, application of the inhibitor Ni2+ appears to reduce [Ca2+] measured by fluo-3. To investigate how the apparent reduction in [Ca2+]i occurs we examined Ca2+ transport by the human Na+/Ca2+ exchanger expressed in Sf9 cells. Transport of Ca2+ by the Na+/Ca2+ exchanger was examined using a laser-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 297 2  شماره 

صفحات  -

تاریخ انتشار 2009