Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans.

نویسندگان

  • K F Petersen
  • D Laurent
  • D L Rothman
  • G W Cline
  • G I Shulman
چکیده

13C NMR spectroscopy was used to assess flux rates of hepatic glycogen synthase and phosphorylase in overnight-fasted subjects under one of four hypoglucagonemic conditions: protocol I, hyperglycemic (approximately 10 mM) -hypoinsulinemia (approximately 40 pM); protocol II, euglycemic (approximately 5 mM) -hyperinsulinemia (approximately 400 pM); protocol III, hyperglycemic (approximately 10 mM) -hyperinsulinemia (approximately 400 pM); and protocol IV; euglycemic (approximately 5 mM) -hypoinsulinemia (approximately 40 pM). Inhibition of net hepatic glycogenolysis occurred in both protocols I and II compared to protocol IV but via a different mechanism. Inhibition of net hepatic glycogenolysis occurred in protocol I mostly due to decreased glycogen phosphorylase flux, whereas in protocol II inhibition of net hepatic glycogenolysis occurred exclusively through the activation of glycogen synthase flux. Phosphorylase flux was unaltered, resulting in extensive glycogen cycling. Relatively high rates of net hepatic glycogen synthesis were observed in protocol III due to combined stimulation of glycogen synthase flux and inhibition of glycogen phosphorylase flux. In conclusion, under hypoglucagonemic conditions: (a) hyperglycemia, per se, inhibits net hepatic glycogenolysis primarily through inhibition of glycogen phosphorylase flux; (b) hyperinsulinemia, per se, inhibits net hepatic glycogenolysis primarily through stimulation of glycogen synthase flux; (c) inhibition of glycogen phosphorylase and the activation of glycogen synthase are not necessarily coupled and coordinated in a reciprocal fashion; and (d) promotion of hepatic glycogen cycling may be the principal mechanism by which insulin inhibits net hepatic glycogenolysis and endogenous glucose production in humans under euglycemic conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear magnetic resonance studies of hepatic glucose metabolism in humans.

Nuclear magnetic resonance (NMR) spectroscopy has made noninvasive and repetitive measurements of human hepatic glycogen concentrations possible. Monitoring of liver glycogen in real-time mode has demonstrated that glycogen concentrations decrease linearly and that net hepatic glycogenolysis contributes only about 50 percent to glucose production during the early period of a fast. Following a m...

متن کامل

Skeletal Muscle Glycogenolysis

The effects of minimal increments in plasma insulin concentrations on hepatic glucose production and glucose uptake, skeletal muscle net glycogen synthesis and glycogenolysis, glycogen synthase and phosphorylase activity, glucose-6-phosphate and uridinediphosphoglucose (UDPG) concentrations were examined in 24-h and in 6-h fasted conscious rats. Insulin was infused for 120 min at rates of 1.5, ...

متن کامل

Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans.

Fructose has been shown to have a catalytic effect on glucokinase activity in vitro; however, its effects on hepatic glycogen metabolism in humans is unknown. To address this question, we used (13)C nuclear magnetic resonance (NMR) spectroscopy to noninvasively assess rates of hepatic glycogen synthesis and glycogenolysis under euglycemic (approximately 5 mmol/l) hyperinsulinemic conditions (ap...

متن کامل

Silencing of FGF-21 expression promotes hepatic gluconeogenesis and glycogenolysis by regulation of the STAT3-SOCS3 signal.

Insulin resistance is a metabolic disorder associated with type 2 diabetes. Recent reports have shown that fibroblast growth factor-21 (FGF-21) plays an important role in the progression of insulin resistance. However, the biochemical and molecular mechanisms by which changes in FGF-21 activation result in changes in the rates of hepatic gluconeogenesis and glycogenolysis remain to be elucidate...

متن کامل

Contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis.

Net hepatic glycogenolysis and gluconeogenesis were examined in normal ( n = 4) and cirrhotic ( n = 8) subjects using two independent methods [13C nuclear magnetic resonance spectroscopy (NMR) and a2H2O method]. Rates of net hepatic glycogenolysis were calculated by the change in hepatic glycogen content before (∼11:00 PM) and after (∼7:00 AM) an overnight fast using13C NMR and magnetic resonan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 101 6  شماره 

صفحات  -

تاریخ انتشار 1998