Autonomous Loitering Control for a Flapping Wing Miniature Aerial Vehicle with Independent Wing Control

نویسندگان

  • L. Roberts
  • H. A. Bruck
  • S. K. Gupta
  • Luke Roberts
  • Hugh A. Bruck
  • Satyandra K. Gupta
چکیده

Flapping wing miniature aerial vehicles (FWMAVs) offer advantages over traditional fixed wing or quadrotor MAV platforms because they are more maneuverable than fixed wing aircraft and are more energy efficient than quadrotors, while being quieter than both. Currently, autonomy in FWMAVs has only been implemented in flapping vehicles without independent wing control, limiting their level of control. We have developed Robo Raven IV, a FWMAV platform with independently controllable wings and an actuated tail controlled by an onboard autopilot system. In this paper, we present the details of Robo Raven IV platform along with a control algorithm that uses a GPS, gyroscope, compass, and custom PID controller to autonomously loiter about a predefined point. We show through simulation that this system has the ability to loiter in a 50 meter radius around a predefined location through the manipulation of the wings and tail. A simulation of the algorithm using characterized GPS and tail response error via a PID controller is also developed. Flight testing of Robo Raven IV demonstrated the success of this platform, even in winds of up to 10 mph. INTRODUCTION Humanity has always been fascinated by the idea of creating machines that fly by flapping their wings the way birds do in nature. However, beyond this fascination, there are real benefits to creating such a platform on the small scale of miniature aerial vehicles (MAVs). Fixed wing MAVs are able to fly at high velocities and travel large distances quickly, but they have to fly at these higher speeds in order to maintain altitude. This makes them less maneuverable than a rotatory wing platform, like a helicopter or a quadrotor. Rotary wing MAVs such as these are very maneuverable and can even hover and travel vertically, providing a level of control fixed wing aircraft simply do not have. However, these platforms

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Fabrication of Ultralight High-Voltage Power Circuits for Flapping-Wing Robotic Insects

Flapping-wing robotic insects are small, highly maneuverable flying robots inspired by biologicalinsects and useful for a wide range of tasks, including exploration, environmental monitoring, searchand rescue, and surveillance. Recently, robotic insects driven by piezoelectric actuators have achievedthe important goal of taking off with external power; however, fully autonomous operation requir...

متن کامل

Design and Control of a Flapping Flight Micro Aerial Vehicle

Miniature flapping flight systems hold great promise in matching the agility of their natural counterparts, bees, flies, and hummingbirds. Characterized by reciprocating wing motion, unsteady aerodynamics, and the ability to hover, insect-like flapping flight presents an interesting locomotion strategy capable of functioning at small size scales and is still a current focus of research. A vehic...

متن کامل

Modeling and Control of a Dragonfly-like Micro Aerial Vehicle

The purpose of this research is to model and control a dragonflylike flapping wing micro aerial vehicle (FWMAV). It is well known that micro aerial vehicle (MAV) designs can be classified as fixed wing, rotary wing and flapping wing. Fixed wing MAV is capable of fast forward flight, which is suitable for flying outdoor. Rotary wing MAV is suitable for movement at low speed. Recently, flapping w...

متن کامل

Development of c-means Clustering Based Adaptive Fuzzy Controller for A Flapping Wing Micro Air Vehicle

Advanced and accurate modelling of a Flapping Wing Micro Air Vehicle (FW MAV) and its control is one of the recent research topics related to the field of autonomous Unmanned Aerial Vehicles (UAVs). In this work, a four wing Natureinspired (NI) FW MAV is modeled and controlled inspiring by its advanced features like quick flight, vertical take-off and landing, hovering, and fast turn, and enhan...

متن کامل

A Hybrid Feedback Control Strategy for Autonomous Waypoint Transitioning and Loitering of Unmanned Aerial Vehicles

We consider the problem of autonomously controlling a fixed-wing aerial vehicle to visit a neighborhood of a pre-defined waypoint, and when nearby it, loiter around it. To solve this problem, we propose a hybrid feedback control strategy that unites two state-feedback controllers: a global controller capable of steering or transitioning the vehicle to nearby the waypoint and a local controller ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014