Long non-coding RNA PTENP1 inhibits proliferation and migration of breast cancer cells via AKT and MAPK signaling pathways

نویسندگان

  • Sheng Chen
  • Ye Wang
  • Jian-Hua Zhang
  • Qi-Jun Xia
  • Qiang Sun
  • Zhen-Kai Li
  • Jian-Guo Zhang
  • Mao-Sheng Tang
  • Mao-Sheng Dong
چکیده

We aimed to investigate the influence of long non-coding RNA (lncRNA) PTEN pseudogene-1 (PTENP1) on the proliferation, migration and cycle of breast cancer cells and its mechanism. Lentiviral vectors expressing PTENP1 were synthesized and breast cancer cells MCF7 were transfected with LV003-GFP-PTENP1 and LV003-GFP, respectively. The proliferation capacities of breast cancer cells were detected using CCK-8 assay, and the migration capacities of breast cancer cells were detected using scratch assay; flow cytometry was used to detect the cell cycles and Western blot was used to detect the expression levels of cyclin A2, CDK2, p-p44/42 MAPK, t-p44/42 MAPK, p-p38 MAPK, t-p38 MAPK, p-AKT, t-AKT in AKT and MAPK pathways. The absorbance values (A450) of cells in experimental group at 48 and 72 h were 1.4±0.3 and 2.3±0.47, respectively, which were significantly lower than those in control group (3.2±0.39, 3.4±0.58) (P<0.05). The number of cell colonies in experimental group was (48±13), which was significantly lower than that in control group (159±16) (P<0.01). The cell migration rate in experimental group was 22.8±3.3%, which was significantly lower than that in control group 61.8±5.2% (P<0.01). Western blot detection showed that the expression levels of cyclin A2, CDK2, p-AKT, p-p44/42 MAPK and p-p38 MAPK in experimental group were significantly decreased compared with those in control group. LncRNA PTENP1 can inhibit the proliferation and migration of breast cancer cells via the AKT and MAPK signaling pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...

متن کامل

LINC00461, a long non-coding RNA, is important for the proliferation and migration of glioma cells

An increasing number of reports have revealed that long non-coding RNAs are important players in tumorigenesis. Here we showed that long non-coding RNA LINC00461 is highly expressed in glioma tissues compared to non-neoplastic brain tissues. The knockdown of LINC00461 suppressed cyclinD1/A/E expression which led to G0/G1 cell cycle arrest and inhibited cell proliferation in glioma cells. LINC00...

متن کامل

AKT family and miRNAs expression in IL-2-induced CD4+T cells

Objective(s): Study of non-coding RNAs is considerable to elucidate principal biological questions or design new therapeutic strategies. miRNAs are a group of non-coding RNAs that their functions in PI3K/AKT signaling and apoptosis pathways after T cell activation is not entirely clear. Herein, miRNAs expression and their putative targets in the mentioned pathways were studied in the activated ...

متن کامل

Investigating the role of signaling pathways and cancer stem cells in esophageal cancer with a therapeutic approach

Esophageal cancer (EC) is the sixth main cause of cancer death worldwide. Important genes associated with esophageal cancer include FOXO3, AKT, and GSK3β. Excessive FOXO3 expression inhibits the proliferation of cancer cells. The expression of AKT is involved in controlling cell growth in tumors. GSK3β activity is higher in cancer tissues. Given the effective role of cancer stem cells (CSCs) in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017