Biomechanics of isolated tomato (Solanum lycopersicum L.) fruit cuticles: the role of the cutin matrix and polysaccharides.

نویسندگان

  • Gloria López-Casado
  • Antonio J Matas
  • Eva Domínguez
  • Jesús Cuartero
  • Antonio Heredia
چکیده

The mechanical characteristics of the cuticular membrane (CM), a complex composite biopolymer basically composed of a cutin matrix, waxes, and hydrolysable polysaccharides, have been described previously. The biomechanical behaviour and quantitative contribution of cutin and polysaccharides have been investigated here using as experimental material mature green and red ripe tomato fruits. Treatment of isolated CM with anhydrous hydrogen fluoride in pyridine allowed the selective elimination of polysaccharides attached to or incrusted into the cutin matrix. Cutin samples showed a drastic decrease in elastic modulus and stiffness (up to 92%) compared with CM, which clearly indicates that polysaccharides incorporated into the cutin matrix are responsible for the elastic modulus, stiffness, and the linear elastic behaviour of the whole cuticle. Reciprocally, the viscoelastic behaviour of CM (low elastic modulus and high strain values) can be assigned to the cutin. These results applied both to mature green and red ripe CM. Cutin elastic modulus, independently of the degree of temperature and hydration, was always significantly higher for the ripe than for the green samples while strain was lower; the amount of phenolics in the cutin network are the main candidates to explain the increased rigidity from mature green to red ripe cutin. The polysaccharide families isolated from CM were pectin, hemicellulose, and cellulose, the main polymers associated with the plant cell wall. The three types of polysaccharides were present in similar amounts in CM from mature green and red ripe tomatoes. Physical techniques such as X-ray diffraction and Raman spectroscopy indicated that the polysaccharide fibres were mainly randomly oriented. A tomato fruit CM scenario at the supramolecular level that could explain the observed CM biomechanical properties is presented and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tomato GDSL1 is required for cutin deposition in the fruit cuticle.

The plant cuticle consists of cutin, a polyester of glycerol, hydroxyl, and epoxy fatty acids, covered and filled by waxes. While the biosynthesis of cutin building blocks is well documented, the mechanisms underlining their extracellular deposition remain unknown. Among the proteins extracted from dewaxed tomato (Solanum lycopersicum) peels, we identified GDSL1, a member of the GDSL esterase/a...

متن کامل

Transient silencing of CHALCONE SYNTHASE during fruit ripening modifies tomato epidermal cells and cuticle properties.

Tomato (Solanum lycopersicum) fruit ripening is accompanied by an increase in CHALCONE SYNTHASE (CHS) activity and flavonoid biosynthesis. Flavonoids accumulate in the cuticle, giving its characteristic orange color that contributes to the eventual red color of the ripe fruit. Using virus-induced gene silencing in fruits, we have down-regulated the expression of SlCHS during ripening and compar...

متن کامل

Transcriptional Activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 Gene Is Required for Cuticle Development of Tomato Fruit.

Fruit development and ripening entail key biological and agronomic events, which ensure the appropriate formation and dispersal of seeds and determine productivity and yield quality traits. The MADS box gene Arlequin/tomato Agamous-like1 (hereafter referred to as TAGL1) was reported as a key regulator of tomato (Solanum lycopersicum) reproductive development, mainly involved in flower developme...

متن کامل

Mining the surface proteome of tomato (Solanum lycopersicum) fruit for proteins associated with cuticle biogenesis

The aerial organs of plants are covered by the cuticle, a polyester matrix of cutin and organic solvent-soluble waxes that is contiguous with the polysaccharide cell wall of the epidermis. The cuticle is an important surface barrier between a plant and its environment, providing protection against desiccation, disease, and pests. However, many aspects of the mechanisms of cuticle biosynthesis, ...

متن کامل

Worm castings-based growing media with biochar and arbuscular mycorrhizal fungi for producing organic tomato (Solanum lycopersicum L.) in greenhouse.

Organic vegetable production has specific research and innovation requirements which are not shared by other parts of the food and farming sector. A pot experiment was conducted to investigate the interactive effects of few permitted organic inputs such as arbuscular mycorrhizal fungi, biochar, and different ratios of peat:worm casting on tomato (Solanum lycopersicum L.) growth, mycorrhizal dep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 58 14  شماره 

صفحات  -

تاریخ انتشار 2007