A spiking network model of short-term active memory.

نویسندگان

  • D Zipser
  • B Kehoe
  • G Littlewort
  • J Fuster
چکیده

Studies of cortical neurons in monkeys performing short-term memory tasks have shown that information about a stimulus can be maintained by persistent neuron firing for periods of many seconds after removal of the stimulus. The mechanism by which this sustained activity is initiated and maintained is unknown. In this article we present a spiking neural network model of short-term memory and use it to investigate the hypothesis that recurrent, or "re-entrant," networks with constant connection strengths are sufficient to store graded information temporarily. The synaptic weights that enable the network to mimic the input-output characteristics of an active memory module are computed using an optimization procedure for recurrent networks with non-spiking neurons. This network is then transformed into one with spiking neurons by interpreting the continuous output values of the nonspiking model neurons as spiking probabilities. The behavior of the model neurons in this spiking network is compared with that of 179 single units previously recorded in monkey inferotemporal (IT) cortex during the performance of a short-term memory task. The spiking patterns of almost every model neuron are found to resemble closely those of IT neurons. About 40% of the IT neuron firing patterns are also found to be of the same types as those of model neurons. A property of the spiking model is that the neurons cannot maintain precise graded activity levels indefinitely, but eventually relax to one of a few constant activities called fixed-point attractors. The noise introduced into the model by the randomness of spiking causes the network to jump between these attractors. This switching between attractor states generates spike trains with a characteristic statistical temporal structure. We found evidence for the same kind of structure in the spike trains from about half of the IT neurons in our test set. These results show that the behavior of many real cortical memory neurons is consistent with an active storage mechanism based on recurrent activity in networks with fixed synaptic strengths.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short Term Memory in a Network of Spiking Neurons

A distributed connectionist model of spiking neurons (INFERNET) is used to simulate various aspects of Short Term Memory. In INFERNET, short term memory is the transient activation of long term memory elements. This single store model has a human-like performance in short term memory span tasks, but also displays serial position effects, similarity effects, and double dissociation between short...

متن کامل

Prediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network

Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...

متن کامل

Self-organized Short-Term Memory Mechanism in Spiking Neural Network

The paper is devoted to implementation and exploration of evolutionary development of the short-term memory mechanism in spiking neural networks (SNN) starting from initial chaotic state. Short-term memory is defined here as a network ability to store information about recent stimuli in form of specific neuron activity patterns. Stable appearance of this effect was demonstrated for so called st...

متن کامل

Prediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network

Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...

متن کامل

Integration of remote sensing and meteorological data to predict flooding time using deep learning algorithm

Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 13 8  شماره 

صفحات  -

تاریخ انتشار 1993