New Partition Statistic Bg-rank and Its Applications

نویسندگان

  • ALEXANDER BERKOVICH
  • FRANK G. GARVAN
چکیده

Let π denote partition into parts λ1 ≥ λ2 ≥ λ3 . . .. In [2] we defined BG-rank(π) as

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Andrews-stanley Refinement of Ramanujan’s Partition Congruence modulo 5 and Generalizations

In a recent study of sign-balanced, labelled posets, Stanley introduced a new integral partition statistic srank(π) = O(π)−O(π′), where O(π) denotes the number of odd parts of the partition π and π′ is the conjugate of π. In a forthcoming paper, Andrews proved the following refinement of Ramanujan’s partition congruence mod 5: p0(5n+ 4) ≡ p2(5n+ 4) ≡ 0 (mod 5), p(n) = p0(n) + p2(n), where pi(n)...

متن کامل

The Bg-rank of a Partition and Its Applications

Let π denote a partition into parts λ1 ≥ λ2 ≥ λ3 . . .. In a 2006 paper we defined BG-rank(π) as

متن کامل

New identities for 7-cores with prescribed BG-rank

Let π be a partition. BG-rank(π) is defined as an alternating sum of parities of parts of π [1]. In [2], Berkovich and Garvan found theta series representations for the t-core generating functions P n≥0 at,j(n)q , where at,j(n) denotes the number of t-cores of n with BG-rank = j. In addition, they found positive eta-quotient representations for odd t-core generating functions with extreme value...

متن کامل

Dyson’s Rank, Overpartitions, and Weak Maass Forms

In a series of papers the first author and Ono connected the rank, a partition statistic introduced by Dyson, to weak Maass forms, a new class of functions related to modular forms. Naturally it is of wide interest to find other explicit examples of Maass forms. Here we construct a new infinite family of such forms, arising from overpartitions. As applications we obtain combinatorial decomposit...

متن کامل

Rank Differences for Overpartitions

The rank of a partition is the largest part minus the number of parts. This statistic was introduced by Dyson [14], who observed empirically that it provided a combinatorial explanation for Ramanujan’s congruences p(5n + 4) ≡ 0 (mod 5) and p(7n + 5) ≡ 0 (mod 7). Here p(n) denotes the usual partition function. Specifically, Dyson conjectured that if N(s,m, n) denotes the number of partitions of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006