Weighted Sampling Without Replacement from Data Streams
نویسندگان
چکیده
Weighted sampling without replacement has proved to be a very important tool in designing new algorithms. Efraimidis and Spirakis (IPL 2006) presented an algorithm for weighted sampling without replacement from data streams. Their algorithm works under the assumption of precise computations over the interval [0, 1]. Cohen and Kaplan (VLDB 2008) used similar methods for their bottom-k sketches. Efraimidis and Spirakis ask as an open question whether using finite precision arithmetic impacts the accuracy of their algorithm. In this paper we show a method to avoid this problem by providing a precise reduction from k-sampling without replacement to k-sampling with replacement. We call the resulting method Cascade Sampling.
منابع مشابه
Weighted Random Sampling over Data Streams
In this work, we present a comprehensive treatment of weighted random sampling (WRS) over data streams. More precisely, we examine two natural interpretations of the item weights, describe an existing algorithm for each case ([2,4]), discuss sampling with and without replacement and show adaptations of the algorithms for several WRS problems and evolving data streams.
متن کاملWeighted Random Sampling (2005; Efraimidis, Spirakis)
The problem of random sampling without replacement (RS) calls for the selection of m distinct random items out of a population of size n. If all items have the same probability to be selected, the problem is known as uniform RS. Uniform random sampling in one pass is discussed in [1, 5, 10]. Reservoir-type uniform sampling algorithms over data streams are discussed in [11]. A parallel uniform r...
متن کاملTighter estimation using bottom k sketches
Summaries of massive data sets support approximate queryprocessing over the original data. A basic aggregate over aset of records is the weight of subpopulations specified as apredicate over records’ attributes. Bottom-k sketches are apowerful summarization format of weighted items that in-cludes priority sampling [22], and the classic weighted sam-pling without replacem...
متن کاملAccelerating weighted random sampling without replacement
Random sampling from discrete populations is one of the basic primitives in statistical computing. This article briefly introduces weighted and unweighted sampling with and without replacement. The case of weighted sampling without replacement appears to be most difficult to implement efficiently, which might be one reason why the R implementation performs slowly for large problem sizes. This p...
متن کاملSketch-Based Estimation of Subpopulation-Weight
Summaries of massive data sets support approximate query processing over the original data. A basic aggregate over a set of records is the weight of subpopulations specified as a predicate over records’ attributes. Bottom-k sketches are a powerful summarization format of weighted items that includes priority sampling [18] (pri) and the classic weighted sampling without replacement (ws). They ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 115 شماره
صفحات -
تاریخ انتشار 2015