An Unsupervised Speaker Clustering Technique based on SOM and I-vectors for Speech Recognition Systems

نویسندگان

  • Hany Ahmed
  • Mohamed S. Elaraby
  • Abdullah M. Mousa
  • Mostafa Elhosiny
  • Sherif Abdou
  • Mohsen Rashwan
چکیده

In this paper, we introduce an enhancement for speech recognition systems using an unsupervised speaker clustering technique. The proposed technique is mainly based on I-vectors and Self-Organizing Map Neural Network (SOM). The input to the proposed algorithm is a set of speech utterances. For each utterance, we extract 100-dimensional I-vector and then SOM is used to group the utterances to different speakers. In our experiments, we compared our technique with Normalized Cross Likelihood ratio Clustering (NCLR). Results show that the proposed technique reduces the speaker error rate in comparison with NCLR. Finally, we have experimented the effect of speaker clustering on Speaker Adaptive Training (SAT) in a speech recognition system implemented to test the performance of the proposed technique. It was noted that the proposed technique reduced the WER over clustering speakers with NCLR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

متن کامل

Comparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps

Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...

متن کامل

UTD-CRSS Systems for 2016 NIST Speaker Recognition Evaluation

This study describes systems submitted by the Center for Robust Speech Systems (CRSS) from the University of Texas at Dallas (UTD) to the 2016 National Institute of Standards and Technology (NIST) Speaker Recognition Evaluation (SRE). We developed 4 UBM and DNN i-vector based speaker recognition systems with alternate data sets and feature representations. Given that the emphasis of the NIST SR...

متن کامل

Applying Independent Component Analysis for Speech Feature Detection

An approach to speech feature detection is developed, which uses the technique of independent component analysis for a blind (unsupervised learning) detection of basic vectors in the Fourier space. This kind of features could replace the Mel Frequency Cepstrum Coefficient (MFCC) features, widely used today for phoneme-based speech recognition. Alternatively, the ICA components could act as basi...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017