Unconditionally stable meshless integration of time-domain Maxwell's curl equations

نویسندگان

  • Guido Ala
  • Elisa Francomano
  • Salvatore Ganci
چکیده

Keywords: ADI leapfrog method Meshless methods Smoothed particle electromagnetics a b s t r a c t Grid based methods coupled with an explicit approach for the evolution in time are traditionally adopted in solving PDEs in computational electromagnetics. The discretiza-tion in space with a grid covering the problem domain and a stability step size restriction, must be accepted. Evidence is given that efforts need for overcoming these heavy constraints. The connectivity laws among the points scattered in the problem domain can be avoided by using meshless methods. Among these, the smoothed particle electromag-netics, gives an interesting answer to the problem, overcoming the limit of the grid generation. In the original formulation an explicit integration scheme is used providing, spatial and time discretization strictly interleaved and mutually conditioned. In this paper a formulation of the alternating direction implicit scheme is proposed into the meshless framework. The developed formulation preserves the leapfrog marching on in time of the explicit integration scheme. Studies on the systems matrices arising at each temporal step, are reported referring to the meshless discretization. The new method, not constrained by a grid in space and unconditionally stable in time, is validated by numerical simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unconditionally stable integration of Maxwell's equations

Numerical integration of Maxwell's equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction implicitfinite difference time domain scheme. In this paper we discuss unconditionally stable integration for a general sem...

متن کامل

Three dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions

In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...

متن کامل

Unconditionally stable improved meshless methods for electromagnetic time-domain modeling

Purpose – In this paper, a modified meshless method, as one of the numerical techniques that has recently emerged in the area of computational electromagnetics, is extended to solving time-domain wave equation. The paper aims to discuss these issues. Design/methodology/approach – In space domain, the fields at the collocation points are expanded into a series of new Shepard’s functions which ha...

متن کامل

Full-wave semiconductor devices simulation using meshless and finite-difference time-domain approaches

A new numerical method for the full-wave physical modelling of semiconductor devices using a combination of the meshless and finite-difference time-domain (FDTD) approaches is described. The model consists of the electron equations for the active part and Maxwell’s equations for the electromagnetic effects, which describe the complete behaviour of a high-frequency active device. The uncondition...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 255  شماره 

صفحات  -

تاریخ انتشار 2015