95Mo nuclear magnetic resonance parameters of molybdenum hexacarbonyl from density functional theory: appraisal of computational and geometrical parameters.
نویسندگان
چکیده
Solid-state (95)Mo nuclear magnetic resonance (NMR) properties of molybdenum hexacarbonyl have been computed using density functional theory (DFT) based methods. Both quadrupolar coupling and chemical shift parameters were evaluated and compared with parameters of high precision determined using single-crystal (95)Mo NMR experiments. Within a molecular approach, the effects of major computational parameters, i.e. basis set, exchange-correlation functional, treatment of relativity, have been evaluated. Except for the isotropic parameter of both chemical shift and chemical shielding, computed NMR parameters are more sensitive to geometrical variations than computational details. Relativistic effects do not play a crucial part in the calculations of such parameters for the 4d transition metal, in particular isotropic chemical shift. Periodic DFT calculations were tackled to measure the influence of neighbouring molecules on the crystal structure. These effects have to be taken into account to compute accurate solid-state (95)Mo NMR parameters even for such an inorganic molecular compound.
منابع مشابه
Rsc_cp_c1cp22289a 1..9
Solid-state Mo nuclear magnetic resonance (NMR) properties of molybdenum hexacarbonyl have been computed using density functional theory (DFT) based methods. Both quadrupolar coupling and chemical shift parameters were evaluated and compared with parameters of high precision determined using single-crystal Mo NMR experiments. Within a molecular approach, the effects of major computational param...
متن کاملComputational study of energetic, stability, and nuclear magnetic resonance of BN nanotube as a nanosensor
Now a day study on boron nitrid nanotubes are in considerable attetion due to their unique properties in different field of science. In this letter, after final optimization, thermodynamic properties analysis, stabilities, electronic structure and nuclear magnetic resonance parameters including σ isotropic and σ anisotropic tensors and asymmetric parameters of 15N and 11B nuclei are calculated....
متن کاملComputational Investigation on Naphthoquinone Derivatives :Nuclear Magnetic Resonance (NMR) and Quantum mechanic
Naphthoquinones are natural aromatic compounds that can be discovered in various plant families. In recent times a diversity of biological activities of these compounds has been reported. In most cases, these pharmacological activities are related to redox and acid-base properties, which can be modulated synthetically by modifying the substituents attached to the 1, 4- naphthoquinone ring, in o...
متن کاملA DFT study of NMR parameters for MgO nanotubes
Magnesium oxide nanotubes of finite length are investigated by the Density Functional Theory (DFT) at the B3LYP/6-31G (d) level. The (6, 0) zigzag and (4, 4) armchair of MgO nanotubes were considered and nuclear magnetic resonance properties including isotropic and anisotropic chemical shielding parameters (CSI and CSA) were calculated for 25Mg and 17O atoms of the optimiz...
متن کاملA DFT study of NMR parameters for MgO nanotubes
Magnesium oxide nanotubes of finite length are investigated by the Density Functional Theory (DFT) at the B3LYP/6-31G (d) level. The (6, 0) zigzag and (4, 4) armchair of MgO nanotubes were considered and nuclear magnetic resonance properties including isotropic and anisotropic chemical shielding parameters (CSI and CSA) were calculated for 25Mg and 17O atoms of the optimiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 43 شماره
صفحات -
تاریخ انتشار 2011