Using Aerial Hyperspectral Remote Sensing Imagery to Estimate Corn Plant Stand Density
نویسندگان
چکیده
Since corn plant stand density is important for optimizing crop yield, several researchers have recently developed ground‐based systems for automatic measurement of this crop growth parameter. Our objective was to use data from such a system to assess the potential for estimation of corn plant stand density using remote sensing images. Aerial hyperspectral remote sensing imagery was collected on three dates over three plots of corn in central Iowa during the 2004 growing season. The imagery had a spatial resolution of 1 m and a spectral resolution of 3 nm between 498 nm and 855 nm. A machine vision system for early‐season measurement of corn plant stand density was also used to map every row of corn within the three plots, and a complete inventory of corn plants was generated as a rich ground reference dataset. A principal component regression analysis was used to assess relationships between plant stand density measurements and principal components of hyperspectral reflectance for each plot, on each image collection date, and at three different spatial resolutions (2, 6, and 10 m). The maximum R2 for regressions was 0.79. Estimates of corn plant stand density were best when using imagery collected at the later vegetative and early reproductive corn growth stages. Quantization effects due to row width complicated corn plant stand density estimates at 2 m spatial resolution, and better estimations were typically seen at resolutions of 6 m and 10 m. Among the different cases of plot, image date, and spatial resolution, the principal components of reflectance most highly correlated with plant stand density were able to be classified into four distinct types, denoted as types A, B, C, and D. Type A principal components contrasted all available visible red wavelengths with all available near‐infrared wavelengths. Type B principal components contrasted green wavelengths (531 to 552 nm) plus shorter wave near‐infrared (759 nm) with red wavelengths (675 to 693 nm) plus longer wave near‐infrared (852 nm). Type C principal components summed green wavelengths (528 to 546 nm) and near‐infrared wavelengths (717 to 855 nm). Type D principal components contrasted blue/green wavelengths (498 to 507 nm) with the red edge (717 nm). Remote sensing can be best used to estimate corn plant stand density at mid‐season as long as plant stand variability exists and variability due to other factors is minimal.
منابع مشابه
Fusion of Multispectral Imagery and Spectrometer Data in UAV Remote Sensing
High spatial resolution hyperspectral data often used in precision farming applications are not available from current satellite sensors, and difficult or expensive to acquire from standard aircraft. Alternatively, in precision farming, unmanned aerial vehicles (UAVs) are emerging as lower cost and more flexible means to acquire very high resolution imagery. Miniaturized hyperspectral sensors h...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملA Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data
Recent advances in remote sensed imagery and geospatial image processing using unmanned aerial vehicles (UAVs) have enabled the rapid and ongoing development of monitoring tools for crop management and the detection/surveillance of insect pests. This paper describes a (UAV) remote sensing-based methodology to increase the efficiency of existing surveillance practices (human inspectors and insec...
متن کاملKernel-Based Nonparametric Fisher Classifier for Hyperspectral Remote Sensing Imagery
Hyperspectral Imagery Sensing (HIS) is widely gained tremendous popularity in many research areas such as remotely sensed satellite imaging and aerial reconnaissance. HIS is an important technique with the measurement, analysis, and interpretation of spectra acquired sensing scene an airborne or satellite sensor. The development of sensor technology brought the developing of collecting image da...
متن کاملClassification of Grassland Successional Stages Using Airborne Hyperspectral Imagery
Plant communities differ in their species composition, and, thus, also in their functional trait composition, at different stages in the succession from arable fields to grazed grassland. We examine whether aerial hyperspectral (414–2501 nm) remote sensing can be used to discriminate between grazed vegetation belonging to different grassland successional stages. Vascular plant species were reco...
متن کامل