On the structure of pseudo-Riemannian symmetric spaces
نویسنده
چکیده
Following our approach to metric Lie algebras developed in a previous paper we propose a way of understanding pseudo-Riemannian symmetric spaces which are not semi-simple. We introduce cohomology sets (called quadratic cohomology) associated with orthogonal modules of Lie algebras with involution. Then we construct a functorial assignment which sends a pseudo-Riemannian symmetric space M to a triple consisting of (i) a Lie algebra with involution (of dimension much smaller than the dimension of the transvection group of M), (ii) a semi-simple orthogonal module of the Lie algebra with involution, and (iii) a quadratic cohomology class of this module. That leads to a classification scheme of indecomposable non-simple pseudo-Riemannian symmetric spaces. In addition, we obtain a full classification of symmetric spaces of index 2 (thereby completing and correcting in part earlier classification results due to Cahen/Parker and Neukirchner).
منابع مشابه
Commutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملOn a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کاملGeneralized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کاملHomogeneous pseudo-Riemannian structures of class T2 on low-dimensional generalized symmetric spaces
We give a contribution about the study of homogeneous pseudoRiemannian structures on a type of homogeneous spaces, namely, the pseudo-Riemannian generalized symmetric spaces of low dimensions. It is well known that generalized symmetric Riemannian spaces admit homogeneous structures of the class T2 ⊕ T3. The same property holds in the pseudo-Riemannian context. The aim of the present paper is t...
متن کاملThe classification problem for pseudo-Rie- mannian symmetric spaces
Riemannian and pseudo-Riemannian symmetric spaces with semisimple transvection group are known and classified for a long time. Contrary to that the description of pseudo-Riemannian symmetric spaces with non-semisimple transvection group is an open problem. In the last years some progress on this problem was achieved. In this article we want to explain these results and some of their applications.
متن کاملSome vector fields on a riemannian manifold with semi-symmetric metric connection
In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.
متن کامل