A Note on Random Holomorphic Iteration in Convex Domains
نویسندگان
چکیده
We introduce a geometric condition of Bloch type which guarantees that a subset of a bounded convex domain in several complex variables is degenerate with respect to every iterated function system. Furthermore we discuss the relations of such a Bloch type condition with the analogous hyperbolic Lipschitz condition.
منابع مشابه
Composition operators between growth spaces on circular and strictly convex domains in complex Banach spaces
Let $\Omega_X$ be a bounded, circular and strictly convex domain in a complex Banach space $X$, and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$. The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$ such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$ for some constant $C>0$...
متن کاملWeighted composition operators between growth spaces on circular and strictly convex domain
Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...
متن کاملOn the dynamics of isometries
We provide an analysis of the dynamics of isometries and semicontractions of metric spaces. Certain subsets of the boundary at infinity play a fundamental role and are identified completely for the standard boundaries of CAT(0)– spaces, Gromov hyperbolic spaces, Hilbert geometries, certain pseudoconvex domains, and partially for Thurston’s boundary of Teichmüller spaces. We present several rath...
متن کاملA Generalized Hyperbolic Metric for Plane Domains
A plane domain Ω with more than one boundary point admits a hyperbolic metric and with respect to this metric, every holomorphic map of Ω into a subdomain X ⊆ Ω is a contraction. In this paper we define a new metric for the image domain X that is greater than or equal to the hyperbolic metric. Like the hyperbolic metric it has the property that any holomorphic map from Ω into X is a contraction...
متن کاملConvergence results: A new type iteration scheme for two asymptotically nonexpansive mappings in uniformly convex Banach spaces
In this article, we introduce a new type iterative scheme for approximating common fixed points of two asymptotically nonexpansive mappings is defined, and weak and strong convergence theorem are proved for the new iterative scheme in a uniformly convex Banach space. The results obtained in this article represent an extension as well as refinement of previous known resu...
متن کامل