Identification of genes encoding arabinosyltransferases (SCA) mediating developmental modifications of lipophosphoglycan required for sand fly transmission of leishmania major.

نویسندگان

  • Deborah E Dobson
  • Brenda J Mengeling
  • Salvatore Cilmi
  • Suzanne Hickerson
  • Salvatore J Turco
  • Stephen M Beverley
چکیده

At key steps in the infectious cycle pathogens must adhere to target cells, but at other times detachment is required for transmission. During sand fly infections by the protozoan parasite Leishmania major, binding of replicating promastigotes is mediated by galactosyl side chain (scGal) modifications of phosphoglycan repeats of the major surface adhesin, lipophosphoglycan (LPG). Release is mediated by arabinosyl (Ara) capping of LPG scbetaGal residues upon differentiation to the infective metacyclic stage. We used intraspecific polymorphisms of LPG structure to develop a genetic strategy leading to the identification of two genes (SCA1/2) mediating scAra capping. These LPG side chain beta1,2-arabinosyltransferases (scbetaAraTs) exhibit canonical glycosyltransferase motifs, and their overexpression leads to elevated microsomal scbetaAraT activity. Although the level of scAra caps is maximal in metacyclic parasites, scbetaAraT activity is maximal in log phase cells. Because quantitative immunolocalization studies suggest this is not mediated by sequestration of SCA scbetaAraTs away from the Golgi apparatus during log phase, regulation of activated Ara precursors may control LPG arabinosylation in vivo. The SCA genes define a new family of eukaryotic betaAraTs and represent novel developmentally regulated LPG-modifying activities identified in Leishmania.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional identification of galactosyltransferases (SCGs) required for species-specific modifications of the lipophosphoglycan adhesin controlling Leishmania major-sand fly interactions.

Lipophosphoglycan (LPG) is an abundant surface molecule that plays key roles in the infectious cycle of Leishmania major. The dominant feature of LPG is a polymer of phosphoglycan (PG) (6Galbeta1,4Manalpha1-PO(4)) repeating units. In L. major these are extensively substituted with Gal(beta1,3) side chains, which are required for binding to midgut lectins and survival. We utilized evolutionary p...

متن کامل

Genomic organization and expression of the expanded SCG/L/R gene family of Leishmania major: internal clusters and telomeric localization of SCGs mediating species-specific LPG modifications.

Stage-specific modifications to the abundant surface lipophosphoglycan (LPG) adhesin of Leishmania play critical roles in binding and release of the parasite during its infectious cycle in the sand fly, and control the ability of different fly species to transmit different parasite strains and species. In Leishmania major Friedlin V1, binding to a sand fly midgut lectin is mediated by side chai...

متن کامل

A lipophosphoglycan-independent development of Leishmania in permissive sand flies.

Leishmaniases are serious parasitic diseases the etiological organisms of which are transmitted by insect vectors, phlebotominae sand flies. Two sand fly species, Phlebotomus papatasi and P. sergenti, display remarkable specificity for Leishmania parasites they transmit in nature, but many others are broadly permissive to the development of different Leishmania species. Previous studies have su...

متن کامل

Leishmania major Survival in Selective Phlebotomus papatasi Sand Fly Vector Requires a Specific SCG-Encoded Lipophosphoglycan Galactosylation Pattern

Phlebotomine sand flies that transmit the protozoan parasite Leishmania differ greatly in their ability to support different parasite species or strains in the laboratory: while some show considerable selectivity, others are more permissive. In "selective" sand flies, Leishmania binding and survival in the fly midgut typically depends upon the abundant promastigote surface adhesin lipophosphogl...

متن کامل

Leishmania major Glycosylation Mutants Require Phosphoglycans (lpg2−) but Not Lipophosphoglycan (lpg1−) for Survival in Permissive Sand Fly Vectors

BACKGROUND Sand fly species able to support the survival of the protozoan parasite Leishmania have been classified as permissive or specific, based upon their ability to support a wide or limited range of strains and/or species. Studies of a limited number of fly/parasite species combinations have implicated parasite surface molecules in this process and here we provide further evidence in supp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 31  شماره 

صفحات  -

تاریخ انتشار 2003