Computing the Maximum Detour and Spanning Ratio of Planar Paths, Trees, and Cycles

نویسندگان

  • Stefan Langerman
  • Pat Morin
  • Michael A. Soss
چکیده

The maximum detour and spanning ratio of an embedded graph G are values that measure how well G approximates Euclidean space and the complete Euclidean graph, respectively. In this paper we describe O(n logn) time algorithms for computing the maximum detour and spanning ratio of a planar polygonal path. These algorithms solve open problems posed in at least two previous works [5,10]. We also generalize these algorithms to obtain O(n log n) time algorithms for computing the maximum detour and spanning ratio of planar trees and cycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the Detour and Spanning Ratio of Paths, Trees, and Cycles in 2D and 3D

The detour and spanning ratio of a graph embedded in measure how well approximates Euclidean space and the complete Euclidean graph, respectively. In this paper we describe time algorithms for computing the detour and spanning ratio of a planar polygonal path. By generalizing these algorithms, we obtain -time algorithms for computing the detour or spanning ratio of planar trees and cycles. Fina...

متن کامل

Spanning Ratio and Maximum Detour of Rectilinear Paths in the L1 Plane

The spanning ratio and maximum detour of a graph G embedded in a metric space measure how well G approximates the minimum complete graph containing G and metric space, respectively. In this paper we show that computing the spanning ratio of a rectilinear path P in L1 space has a lower bound of Ω(n log n) in the algebraic computation tree model and describe a deterministic O(n log n) time algori...

متن کامل

A SIMPLE ALGORITHM FOR COMPUTING DETOUR INDEX OF NANOCLUSTERS

Let G be the chemical graph of a molecule. The matrix D = [dij ] is called the detour matrix of G, if dij is the length of longest path between atoms i and j. The sum of all entries above the main diagonal of D is called the detour index of G. In this paper, a new algorithm for computing the detour index of molecular graphs is presented. We apply our algorithm on copper and silver nanoclusters ...

متن کامل

Computing the Maximum Detour of a Plane Geometric Graph in Subquadratic Time

Let G be a plane graph where each edge is a line segment. We consider the problem of computing the maximum detour of G, defined as the maximum over all pairs of distinct points p and q of G of the ratio between the distance between p and q in G and the Euclidean distance ‖pq‖. The fastest known algorithm for this problem has Θ(n2) running time where n is the number of vertices. We show how to o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002