Neural Choice by Elimination via Highway Networks

نویسندگان

  • Truyen Tran
  • Dinh Q. Phung
  • Svetha Venkatesh
چکیده

We introduce Neural Choice by Elimination, a new framework that integrates deep neural networks into probabilistic sequential choice models for learning to rank. Given a set of items to chose from, the elimination strategy starts with the whole item set and iteratively eliminates the least worthy item in the remaining subset. We prove that the choice by elimination is equivalent to marginalizing out the random Gompertz latent utilities. Coupled with the choice model is the recently introduced Neural Highway Networks for approximating arbitrarily complex rank functions. We evaluate the proposed framework on a large-scale public dataset with over 425K items, drawn from the Yahoo! learning to rank challenge. It is demonstrated that the proposed method is competitive against state-of-the-art learning to rank methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Choice by Elimination via Deep Neural Networks

We introduce Neural Choice by Elimination, a new framework that integrates deep neural networks into probabilistic sequential choice models for learning to rank. Given a set of items to chose from, the elimination strategy starts with the whole item set and iteratively eliminates the least worthy item in the remaining subset. We prove that the choice by elimination is equivalent to marginalizin...

متن کامل

Investigating very deep highway networks for parametric speech synthesis

The depth of the neural network is a vital factor that affects its performance. Recently a new architecture called highway network was proposed. This network facilitates the training process of a very deep neural network by using gate units to control a information highway over the conventional hidden layer. For the speech synthesis task, we investigate the performance of highway networks with ...

متن کامل

Analysis of Cost Overrun in Highway Construction Projects Using Multiple Regression and Artificial Neural Networks

Cost overruns are more common in infrastructure projects especially, more common in road construction activities. There existed a need to develop a probabilistic cost overrun analysis model in construction projects as a decision support tool for contractors before the bidding stage. The objective of this study is to identify the critical factors affecting cost overrun and obtain statistical mod...

متن کامل

Modelling of Conventional and Severe Shot Peening Influence on Properties of High Carbon Steel via Artificial Neural Network

Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conv...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016