Mathematically defined tissue engineering scaffold architectures prepared by stereolithography.
نویسندگان
چکیده
The technologies employed for the preparation of conventional tissue engineering scaffolds restrict the materials choice and the extent to which the architecture can be designed. Here we show the versatility of stereolithography with respect to materials and freedom of design. Porous scaffolds are designed with computer software and built with either a poly(D,L-lactide)-based resin or a poly(D,L-lactide-co-epsilon-caprolactone)-based resin. Characterisation of the scaffolds by micro-computed tomography shows excellent reproduction of the designs. The mechanical properties are evaluated in compression, and show good agreement with finite element predictions. The mechanical properties of scaffolds can be controlled by the combination of material and scaffold pore architecture. The presented technology and materials enable an accurate preparation of tissue engineering scaffolds with a large freedom of design, and properties ranging from rigid and strong to highly flexible and elastic.
منابع مشابه
Mathematically and experimentally defined porous bone scaffold produced for bone substitute application
Objective (s): Artificial bone implants have been studied as a possible bone replacement for fractured and destroyed facial tissue; the techniques employed to determine the success of the dental implants. The stability, porosity and resistance of the bone implant which is subjected to varying forces and stresses within the surrounding bone is a subject of interest among the dentists. Materials ...
متن کاملμCT based assessment of mechanical deformation of designed PTMC scaffolds
BACKGROUND Advances in rapid-prototyping and 3D printing technologies have enhanced the possibilities in preparing designed architectures for tissue engineering applications. A major advantage in custom designing is the ability to create structures with desired mechanical properties. While the behaviour of a designed scaffold can be simulated using bulk material properties, it is important to v...
متن کاملSynthesis of biodegradable photocrosslinkable polymers for stereolithography-based 3D fabrication of tissue engineering scaffolds and hydrogels
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Laura Elomaa Name of the doctoral dissertation Synthesis of biodegradable photocrosslinkable polymers for stereolithography-based 3D fabrication of tissue engineering scaffolds and hydrogels Publisher School of Chemical Technology Unit Department of Biotechnology and Chemical Technology Series Aalto University publication seri...
متن کاملHydroxyapatite-Hardystonite nanocomposite scaffolds prepared by the replacing the polyurethane polymeric sponge technique for tissue engineering applications
Objective (s): Silicate bioceramics containing Zn and Ca like hardystonite (Hr) with chemical formula Ca2ZnSi2O7 has attracted the attention of researchers in biomedical field due to its remarkable biological and mechanical properties. The new generation of bioceramics can applied in bone tissue engineering to substitute with infected bone. However, these zirconium-silicate bioceramics have pro...
متن کاملماتریکس سلول زدایی شده ریه و نقش آن به عنوان داربستی در شرایط آزمایشگاهی تمایز سلولهای بلاستمایی
Background: Increasing number of patients facing end-organ failure, as well as the therapeutic challenges surrounding allotransplantation, has catalyzed the evolution of tissue engineering and regenerative medicine. The successful recapitulation of development requires choosing an ideal scaffold material as a mediator of biochemical and biophysical signals. The extracellular matrix (ECM) functi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 31 27 شماره
صفحات -
تاریخ انتشار 2010