Functional Dissection of the Multi-Domain Di-Heme Cytochrome c550 from Thermus thermophilus
نویسندگان
چکیده
In bacteria, oxidation of sulfite to sulfate, the most common strategy for sulfite detoxification, is mainly accomplished by the molybdenum-containing sulfite:acceptor oxidoreductases (SORs). Bacterial SORs are very diverse proteins; they can exist as monomers or homodimers of their core subunit, as well as heterodimers with an additional cytochrome c subunit. We have previously described the homodimeric SOR from Thermus thermophilus HB8 (SOR(TTHB8)), identified its physiological electron acceptor, cytochrome c(550), and demonstrated the key role of the latter in coupling sulfite oxidation to aerobic respiration. Herein, the role of this di-heme cytochrome c was further investigated. The cytochrome was shown to be composed of two conformationally independent domains, each containing one heme moiety. Each domain was separately cloned, expressed in E. coli and purified to homogeneity. Stopped-flow experiments showed that: i) the N-terminal domain is the only one accepting electrons from SOR(TTHB8); ii) the N- and C-terminal domains are in rapid redox equilibrium and iii) both domains are able to transfer electrons further to cytochrome c(552), the physiological substrate of the ba(3) and caa(3) terminal oxidases. These findings show that cytochrome c(550) functions as a electron shuttle, without working as an electron wire with one heme acting as the electron entry and the other as the electron exit site. Although contribution of the cytochrome c(550) C-terminal domain to T. thermophilus sulfur respiration seems to be dispensable, we suggest that di-heme composition of the cytochrome physiologically enables storage of the two electrons generated from sulfite oxidation, thereof ensuring efficient contribution of sulfite detoxification to the respiratory chain-mediated energy generation.
منابع مشابه
Electron transfer among the CuA-, heme b- and a3-centers of Thermus thermophilus cytochrome ba3.
The 1-methyl-nicotinamide radical (MNA(*)), produced by pulse radiolysis has previously been shown to reduce the Cu(A)-site of cytochromes aa(3), a process followed by intramolecular electron transfer (ET) to the heme a but not to the heme a(3) [Farver, O., Grell, E., Ludwig, B., Michel, H. and Pecht, I. (2006) Rates and equilibrium of CuA to heme a electron transfer in Paracoccus denitrificans...
متن کاملMembrane-associated maturation of the heterotetrameric nitrate reductase of Thermus thermophilus.
The nar operon, coding for the respiratory nitrate reductase of Thermus thermophilus (NRT), encodes a di-heme b-type (NarJ) and a di-heme c-type (NarC) cytochrome. The role of both cytochromes and that of a putative chaperone (NarJ) in the synthesis and maturation of NRT was studied. Mutants of T. thermophilus lacking either NarI or NarC synthesized a soluble form of NarG, suggesting that a put...
متن کاملAmino acid sequence of cytochrome c-552 from a thermophilic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus.
The complete amino acid sequence of cytochrome c-552 from an extremely thermophilic hydrogen bacterium, Hydrogenobacter thermophilus TK-6 (IAM 12695), was determined. It is a single polypeptide chain of 80 residues, and its molecular weight, including heme, was calculated to be 7,599. The sequence of cytochrome c-552 from H. thermophilus TK-6 closely resembles that of cytochromes c-551 from Pse...
متن کاملStudies on cytochrome c oxidase activity of the cytochrome c1aa3 complex from Thermus thermophilus.
Cytochrome oxidase from T. thermophilus is isolated as a noncovalent complex of cytochromes c1 and aa3 in which the four redox components of aa3 appear to be associated with a single approximately 55,000-D subunit while the heme C is associated with a approximately 33,000-D peptide (Yoshida, T., Lorence, R. M., Choc, M. G., Tarr, G. E., Findling, K. L., and Fee, J. A. (1983) J. Biol. Chem. 258,...
متن کاملCytochrome oxidase genes from Thermus thermophilus. Nucleotide sequence of the fused gene and analysis of the deduced primary structures for subunits I and III of cytochrome caa3.
Cytochrome caa3, a cytochrome c oxidase from Thermus thermophilus, has been purified and extensively characterized as a two-subunit enzyme containing the metal centers characteristic of cytochrome c oxidases (cytochromes a and a3; copper centers CuA and CuB) and an additional cytochrome c (Fee, J. A., Kuila, D., Mather, M. W., and Yoshida, T. (1986) Biochim. Biophys. Acta 853, 153-185). We have...
متن کامل