A new bottom-up methodology to produce silicon layers with a closed porosity nanostructure and reduced refractive index.
نویسندگان
چکیده
A new approach is presented to produce amorphous porous silicon coatings (a-pSi) with closed porosity by magnetron sputtering of a silicon target. It is shown how the use of He as the process gas at moderated power (50-150 W RF) promotes the formation of closed nanometric pores during the growth of the silicon films. The use of oblique-angle deposition demonstrates the possibility of aligning and orientating the pores in one direction. The control of the deposition power allows the control of the pore size distribution. The films have been characterized by a variety of techniques, including scanning and transmission electron microscopy, electron energy loss spectroscopy, Rutherford back scattering and x-ray photoelectron spectroscopy, showing the incorporation of He into the films (most probably inside the closed pores) and limited surface oxidation of the silicon coating. The ellipsometry measurements show a significant decrease in the refractive index of porous coatings (n(500 nm) = 3.75) in comparison to dense coatings (n(500 nm) = 4.75). The capability of the method to prepare coatings with a tailored refractive index is therefore demonstrated. The versatility of the methodology is shown in this paper by preparing intrinsic or doped silicon and also depositing (under DC or RF discharge) a-pSi films on a variety of substrates, including flexible materials, with good chemical and mechanical stability. The fabrication of multilayers of silicon films of controlled refractive index in a simple (one-target chamber) deposition methodology is also presented.
منابع مشابه
Control capability of electrolytic concentration on refractive index and dielectric constant of porous Silicon layers
Porous Silicon (PS) samples have been prepared by electrochemical anodization of p-type silicon wafer by varying HF concentrations in the electrolytic solution. The structural, surface morphological, optical and surface composition analysis of the prepared samples were done by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Photoluminescence (PL) and Fourier transform infr...
متن کاملControl capability of electrolytic concentration on refractive index and dielectric constant of porous Silicon layers
Porous Silicon (PS) samples have been prepared by electrochemical anodization of p-type silicon wafer by varying HF concentrations in the electrolytic solution. The structural, surface morphological, optical and surface composition analysis of the prepared samples were done by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Photoluminescence (PL) and Fourier transform infr...
متن کاملInfluence of current density on refractive index of p-type nanocrystalline porous silicon
Porous Silicon (PS) layers have been prepared from p-type silicon wafers of (100) orientation. SEM, XRD, FTIR and PL studies were done to characterize the surface morphological and optical properties of PS. The porosity of the PS samples was determined using the parameters obtained from SEM images by geometric method. The refractive index values of the PS samples as a function of poros...
متن کاملInfluence of current density on refractive index of p-type nanocrystalline porous silicon
Porous Silicon (PS) layers have been prepared from p-type silicon wafers of (100) orientation. SEM, XRD, FTIR and PL studies were done to characterize the surface morphological and optical properties of PS. The porosity of the PS samples was determined using the parameters obtained from SEM images by geometric method. The refractive index values of the PS samples as a function of poros...
متن کاملInfluence of silicon dioxide capping layers on pore characteristics in nanocrystalline silicon membranes.
Porous nanocrystalline silicon (pnc-Si) membranes are a new class of membrane material with promising applications in biological separations. Pores are formed in a silicon film sandwiched between nm thick silicon dioxide layers during rapid thermal annealing. Controlling pore size is critical in the size-dependent separation applications. In this work, we systematically studied the influence of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 24 27 شماره
صفحات -
تاریخ انتشار 2013