Universal Finite-size-scaling Functions

نویسندگان

  • YUTAKA OKABE
  • MACOTO KIKUCHI
چکیده

The idea of universal finite-size-scaling functions of the Ising model is tested by Monte Carlo simulations for various lattices. Not only regular lattices such as the square lattice but quasiperiodic lattices such as the Penrose lattice are treated. We show that the finite-size-scaling functions of the order parameter for various lattices are collapsed on a single curve by choosing two nonuniversal scaling metric factors. We extend the idea of the universal finite-size-scaling functions to the order-parameter distribution function. We pay attention to the effects of boundary conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal finite-size scaling functions with exact nonuniversal metric factors.

Using exact partition functions and finite-size corrections for the Ising model on finite square, plane triangular, and honeycomb lattices and extending a method [J. Phys. 19, L1215 (1986)] to subtract leading singular terms from the free energy, we obtain universal finite-size scaling functions for the specific heat, internal energy, and free energy of the Ising model on these lattices with ex...

متن کامل

Finite-size-scaling functions for 3d O(4) and O(2) spin models and QCD

We calculate numerically universal finite-size-scaling functions for the three-dimensional O(4) and O(2) models. The approach of these functions to the infinite-volume scaling functions is studied in detail on the critical and pseudocritical lines. For this purpose we determine the pseudocritical line in two different ways. We find that the asymptotic form of the finite-size-scaling functions i...

متن کامل

Critical finite-size scaling with constraints: Fisher renormalization revisited

The influence of a thermodynamic constraint on the critical finite-size scaling behavior of three-dimensional Ising and XY models is analyzed by MonteCarlo simulations. Within the Ising universality class constraints lead to Fisher renormalized critical exponents, which modify the asymptotic form of the scaling arguments of the universal finite-size scaling functions. Within the XY universality...

متن کامل

Universal finite-size scaling functions for percolation on three-dimensional lattices

Using a histogram Monte Carlo simulation method ~HMCSM!, Hu, Lin, and Chen found that bond and site percolation models on planar lattices have universal finite-size scaling functions for the existence probability Ep , the percolation probability P , and the probability Wn for the appearance of n percolating clusters in these models. In this paper we extend above study to percolation on three-di...

متن کامل

Cluster Analysis of the Ising Model and Universal Finite-Size Scaling

The recent progress in the study of finite-size scaling (FSS) properties of the Ising model is briefly reviewed. We calculate the universal FSS functions for the Binder parameter g and the magnetization distribution function p(m) for the Ising model on L1 ×L2 two-dimensional lattices with tilted boundary conditions. We show that the FSS functions are universal for fixed sets of the aspect ratio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996