Universal Finite-size-scaling Functions
نویسندگان
چکیده
The idea of universal finite-size-scaling functions of the Ising model is tested by Monte Carlo simulations for various lattices. Not only regular lattices such as the square lattice but quasiperiodic lattices such as the Penrose lattice are treated. We show that the finite-size-scaling functions of the order parameter for various lattices are collapsed on a single curve by choosing two nonuniversal scaling metric factors. We extend the idea of the universal finite-size-scaling functions to the order-parameter distribution function. We pay attention to the effects of boundary conditions.
منابع مشابه
Universal finite-size scaling functions with exact nonuniversal metric factors.
Using exact partition functions and finite-size corrections for the Ising model on finite square, plane triangular, and honeycomb lattices and extending a method [J. Phys. 19, L1215 (1986)] to subtract leading singular terms from the free energy, we obtain universal finite-size scaling functions for the specific heat, internal energy, and free energy of the Ising model on these lattices with ex...
متن کاملFinite-size-scaling functions for 3d O(4) and O(2) spin models and QCD
We calculate numerically universal finite-size-scaling functions for the three-dimensional O(4) and O(2) models. The approach of these functions to the infinite-volume scaling functions is studied in detail on the critical and pseudocritical lines. For this purpose we determine the pseudocritical line in two different ways. We find that the asymptotic form of the finite-size-scaling functions i...
متن کاملCritical finite-size scaling with constraints: Fisher renormalization revisited
The influence of a thermodynamic constraint on the critical finite-size scaling behavior of three-dimensional Ising and XY models is analyzed by MonteCarlo simulations. Within the Ising universality class constraints lead to Fisher renormalized critical exponents, which modify the asymptotic form of the scaling arguments of the universal finite-size scaling functions. Within the XY universality...
متن کاملUniversal finite-size scaling functions for percolation on three-dimensional lattices
Using a histogram Monte Carlo simulation method ~HMCSM!, Hu, Lin, and Chen found that bond and site percolation models on planar lattices have universal finite-size scaling functions for the existence probability Ep , the percolation probability P , and the probability Wn for the appearance of n percolating clusters in these models. In this paper we extend above study to percolation on three-di...
متن کاملCluster Analysis of the Ising Model and Universal Finite-Size Scaling
The recent progress in the study of finite-size scaling (FSS) properties of the Ising model is briefly reviewed. We calculate the universal FSS functions for the Binder parameter g and the magnetization distribution function p(m) for the Ising model on L1 ×L2 two-dimensional lattices with tilted boundary conditions. We show that the FSS functions are universal for fixed sets of the aspect ratio...
متن کامل